首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Magnetotransport properties of submicron rings fabricated on the basis of 2D electron gas in a GaAs double quantum well are studied. It is shown that, in such interferometers, the Aharonov-Bohm effect is caused by coherent processes in two weakly coupled rings, which have different widths of electron channels. In these interferometers, a phase inversion of h/e oscillations is observed under the action of the parallel component of a tilted magnetic field. This phenomenon is qualitatively explained by a redistribution of charge carriers in the two rings.  相似文献   

3.
We rederive the Coulomb expansion of the electron gas average energy at finite temperature, starting from scratch, i.e., using only the framework of the grand canonical ensemble and not the finite-T Green's function formalism. We recover the analytical expressions of the exchange and correlation energy in both the high-T and theT=0 limits. We explicitly show the origin of the crossover of the correlation energy leading term frome 4 lne 2 at zero temperature toe 3 at finiteT. We also discuss the relative importance of exchange and correlation in both limits.  相似文献   

4.
We propose a setup to generate nonlocal spin Einstein-Podolsky-Rosen pairs via pair collisions in a 2D interacting electron gas, based on constructive two-particle interference in the spin-singlet channel at the pi/2 scattering angle. We calculate the scattering amplitude via the Bethe-Salpeter equation in the ladder approximation and small r(s) limit and find that the Fermi sea leads to a substantial renormalization of the bare scattering process. From the scattering length, we estimate the current of spin-entangled electrons and show that it is within experimental reach.  相似文献   

5.
6.
Bipolaron states in a quasi-0D quantum dot with a spherical parabolic confinement potential are investigated by applying the Feynman variational principle. The bipolaron coupling energy and self-action potential energy are found to increase with an increase in the Fröhlich electron–phonon-coupling constant. There is also a non-monotonic dependence of the bipolaron coupling energy on the quantum dot radius. With decreasing structure radius the bipolaron coupling energy increases. However, from a critical radius it starts decreasing as the radius decreases, due to the dominance of the coulomb-to-phonon mediated interaction. When electrons in the bipolaron are forcefully neighboured, the polarization of the structure is intensified and consequently there is Coulomb repulsion. The possibility of bipolaron formation depends on the strength of the direct Coulomb repulsion which, in turn, depends on the quantum dot radius. The main contribution to the bipolaron coupling energy comes from the self-action potential. This self-action potential energy influences the energy state of the bipolaron considerably. The ratio of optical-to-static dielectric constants significantly affects the bipolaron coupling energy.  相似文献   

7.
Starting from the Gross-Pitaevskii energy functional of the 3D Bose-Einstein Condensate, we derive approximately the energy functional and the effective coupling constant of the quasi-2D condensate. The evolution of the quasi-2D condensate wave function is studied by a variational method. Low energy excitation spectra for both positive and negative scattering lengths are analyzed. The condition of collapse instability of a quasi-2D Bose gas with attractive particle interaction is also proposed. Received 31 October 2001 / Received in final form 1st March 2002 Published online 28 June 2002  相似文献   

8.
The quantum theory is constructed for screening of the Coulomb field of a point charge in a magnetized electron gas of a quantum cylinder. The asymptotics of the screened potential are calculated for both degenerate and Boltzmann electron gases. It is demonstrated that, in the degenerate case, apart from the known quasi-classical monotonic part, the result contains the quantum oscillating part, which corresponds to Friedel oscillations. The Aharonov-Bohm oscillations of the screened Coulomb interaction of electrons on a cylindrical surface are described analytically. It is shown that the Friedel oscillations can be represented as a superposition of oscillations with different frequencies which are determined by the macroscopic properties of the nanotube.  相似文献   

9.
Thermodynamic properties of degenerate two-dimensional electron gas in complex-shaped quantum well are studied. We determine the equation of state, chemical potential, entropy and heat capacity of the electron gas. An influence of profile and parameters of the quantum well on thermodynamic characteristics are investigated.  相似文献   

10.
量子阱中二维电子气的性质   总被引:2,自引:0,他引:2  
刘富义 《大学物理》2003,22(7):7-10
利用提出的三维不对称方势阱模型,对半导体量子阱中二维电子气的性质进行了研究,确定其量子能级和费米能量,并对有关结果进行了讨论。  相似文献   

11.
12.
13.
Direct electron spin resonance (ESR) on a high mobility two-dimensional electron gas in a single AlAs quantum well reveals an electronic g factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 G. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin-orbit interaction and a modulation of the electron wave vector caused by the microwave electric field. This contrasts markedly with conventional ESR that detects through the microwave magnetic field.  相似文献   

14.
Magnetotransport properties of ballistic ring interferometers made on the basis of 2D electron gas in a GaAs quantum well with AlAs/GaAs superlattice barriers are studied. An asymmetry of magnetoresistance and a phase reversal in h/e oscillations are observed when the bias voltage across the ring exceeds kT/e.  相似文献   

15.
16.
Recently, new quantum effects have been studied in thin nanograting layers. Nanograting on the surface imposes additional boundary conditions on the electron wave function and reduces the density of states (DOS). When the nanograting dimensions are close to the de Broglie wavelength, the DOS reduction is considerable and leads to changes in the layer properties. DOS calculations are challenging to perform and are related to the quantum billiard problem. Performing such calculations requires finding the solutions for the time-independent Schrödinger equation with Dirichlet boundary conditions. Here, we use a numerical method, namely the Method of Auxiliary Sources, which offers significant computational cost reduction relative to other numerical methods. We found the first five eigenfunctions for the nanograting layer and compared them with the corresponding eigenfunctions for a plain layer by calculating the correlation coefficients. Furthermore, the numerical data were used to analyze the DOS reduction. The nanograting is shown to reduce the probability of occupation of a particular quantum state, reducing the integrated DOS by as much as 4.1-fold. This reduction in the DOS leads to considerable changes in the electronic properties.  相似文献   

17.
王立飞  杨光参 《中国物理 B》2009,18(6):2523-2528
This paper studies the quantum dynamics of electrons in a surface quantum well in the time domain with autocorrelation of wave packet. The evolution of the wave packet for different manifold eigenstates with finite and infinite lifetimes is investigated analytically. It is found that the quantum coherence and evolution of the surface electronic wave packet can be controlled by the laser central energy and electric field. The results show that the finite lifetime of excited states expedites the dephasing of the coherent electronic wave packet significantly. The correspondence between classical and quantum mechanics is shown explicitly in the system.  相似文献   

18.
We demonstrate that virtual excitations of higher radial modes in an atomic Bose gas in a tightly confining waveguide result in effective three-body collisions that violate integrability in this quasi-one-dimensional quantum system and give rise to thermalization. The estimated thermalization rates are consistent with recent experimental results in quasi-1D dynamics of ultracold atoms.  相似文献   

19.
20.
The coherent spin dynamics of a two-dimensional electron gas in a GaAs/AlGaAs quantum well is experimentally studied near the filling factors ν = 3 and 1. The nonmonotonic character of the dependence of the spin dephasing time of a Goldstone spin exciton on the filling factor is found experimentally. The observed effect can be due to the formation of a new spin relaxation channel, when the main state of the two-dimensional electron system is a spin-textured liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号