首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang G  Su X 《The Analyst》2011,136(9):1783-1798
Magnetic-fluorescent composite nanoparticles as a new kind of nanoparticle have attracted much attention in recent years. The composite nanoparticles combine the fluorescent properties, magnetic properties and the physical properties of nano-size, so they can offer a range of potential applications, such as bioseparation and bio-imaging, tumor cell localization, and even cancer treatment. This Minireview will introduce the main synthesis strategies for the fabrication of magnetic-fluorescent composite nanoparticles, the current and potential bio-application of magnetic-fluorescent nanocomposites, including protein and DNA separation and detection, bio-imaging and sorting in vitro and in vivo, drug delivery and the cancer treatment.  相似文献   

3.
Terbium (Tb) doped LaMgAl11O19 phosphors have been prepared by the combustion of corresponding metal nitrates (oxidizer) and urea (fuel) at furnace temperature as low as 500 °C. Combustion synthesized powder phosphor was characterized by X-ray diffraction and field emission scanning electron microscopy techniques. LaMgAl11O19 doped with trivalent terbium ions emit weakly in blue and orange light region and strongly in green light region when excited by the ultraviolet light of 261 nm. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least two defect centres. One of the centres (centre I) with principal g-values g = 2.0417 and g = 2.0041 is identified as O2? ion while centre II with an axially symmetric g-tensor with principal values g= 1.9698 and g = 1.9653 is assigned to an F+ centre (singly ionized oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F+ centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F+ centre appear to correlate with the observed high temperature TSL peak in LaMgAl11O19:Tb phosphor.  相似文献   

4.
Europium-doped LaF3 nanoparticles have been prepared by the ionic reaction in the ethanol at 60 degrees C. From the XRD pattern of nanoparticles and the emission spectra of Eu3+ ions, it has been concluded that the Eu3+ ions could easily substitute the La3+ sites and the solid solution La(1-x)Eu(x)F3 can be synthesized. Due to very low phonon energies of LaF3 matrix, the 5D1 emission of Eu3+ ions in La(1-x)Eu(x)F3 nanoparticles can be observed at room temperature when doping concentration of Eu3+ ions is lower than 30 mol%. The quenching process of 5D1 emission can be attributed to cross-relaxation. Since clusters of Eu3+ ions and resonance energy transfer only occurs within one particle due to the hindrance by the particle boundary, the concentration quenching resulted from resonance energy transfer between neighboring Eu3+ ions occurs at higher Eu3+ concentrations in the Eu3+ doped LaF3 nanoparticles.  相似文献   

5.
Ultrasmall nanowires of rare-earth fluoride were prepared via an oriented attachment growth for the first time, and the formation process and the role of the capping ligand were discussed. Furthermore, as a luminescence host, they showed higher emitting intensity with Eu(3+) doping.  相似文献   

6.
This review provides a summary of the coordination chemistry of mono-, bis- and polyphosphonates, as well as of their functionalized analogues. Specific interactions with various metal ions will be discussed in the context of their biological, biomedical and nanotechnological applications. Several complexes will be shown to reveal a spectacular spectrum of possibilities, which the phosphonate moiety gives to coordination chemistry.We would like to show a link between coordination properties and unique functionality of particular phosphonate complexes which were developed and successfully applied in different branches of biological science.  相似文献   

7.
Du  Fangkai  Zhang  Hui  Tan  Xuecai  Ai  Chenhao  Li  Mengru  Yan  Jun  Liu  Min  Wu  Yeyu  Feng  Defen  Liu  Shaogang  Han  Heyou 《Journal of Solid State Electrochemistry》2019,23(8):2579-2588
Journal of Solid State Electrochemistry - A sensitive electrochemiluminescence (ECL) aptasensor based on 3D graphene is described for thrombin detection utilizing nitrogen-doped graphene quantum...  相似文献   

8.
《印度化学会志》2021,98(12):100237
In this work, europium and terbium activated Sr2GeO4 phosphors were successfully developed by traditional solid state method. Powders XRD, FESEM, EDS, FTIR, DRS and PL techniques have been used to probe the as prepared phosphors. Powder XRD patterns of the phosphors are indexed. The elemental composition of phosphors was obtained from their EDS. FTIR spectra are employed to detect different vibrational groups in phosphor compositions. The DRS profiles of both pristine and Eu3+ (Tb3+) substituted samples exhibit broad and strong band in the 230–370 ​nm region. The photoluminescence studies of europium and terbium doped phosphors exhibited optimistic red emission at 617 ​nm (5D07F2 of Eu3+ ions) and intense green emission at 543 ​nm (5D47F5 of Tb3+ ions) upon ultraviolet (UV) excitations respectively. The CIE chromaticity co-ordinates are produced in deep red and green regions. Therefore, these materials may become potential alternatives for red and green phosphors in the display devices and in lamp industry.  相似文献   

9.
When Eu(3+) ions occupy Ca(2+) sites of CaMoO(4), which has a body centered tetragonal structure with inversion symmetry, only the magnetic dipole transition ((5)D(0)→(7)F(1)) should be allowed according to Judd-Ofelt theory. Even if there are a few distortions in the Eu(3+) environment, its intensity should be more than that of the electric dipole transition ((5)D(0)→(7)F(2)). We report here the opposite effect experimentally and ascribe this to the polarizability effect of the MoO(4) tetrahedron, which is neighboring to EuO(8) (symmetric environment). The contribution of the energy transfer process from the Mo-O charge transfer band to Eu(3+) and the role of Eu(3+) over the surface of the particle could be distinguished when luminescence decay processes were measured at two different excitations (250 and 398 nm). Further, the luminescence intensities and lifetimes increase significantly with increasing heat-treatment temperature of the doped samples. This is attributed to the reduction of H(2)O from the surface of the particles and a non-radiative process after heat treatment.  相似文献   

10.
The nanoparticles of CaMoO(4)?:?Eu(3+) (Eu(3+) = 0, 1, 3, 5, 7, 10 at. %) are prepared at low temperature (150 °C for 3 h) using urea hydrolysis in ethylene glycol. These are characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM). From XRD study, it was found that the solubility limit of Eu(3+) ions at the Ca(2+) sites is up to 3 at. % and above this, phase segregation occurs. In combination with Rietveld analysis, its crystal structure was found to be tetragonal phase (space group I4(1)/a (88) and Z = 4 (number of CaMoO(4) formula units per unit cell). Unit cell parameters and bond distances are calculated. The average crystallite sizes of as-prepared, 500 and 900 °C heated samples are found to be 20, 35 and 70 nm, respectively. The lattice strain is found to be 0.003-0.005. From IR study, the bands at 820 and 441 cm(-1) are assigned to asymmetric stretching and bending vibrations of the MoO(4)(2-) tetrahedron, respectively. From TEM study, the shape of particle was found to be spherical. The high resolution TEM suggests a change in orientation of the crystal on annealing up to 900 °C.  相似文献   

11.
12.
YF3:Tb, LaF3:Ce/Tb, and GdF3:Tb nanoparticles (NPs) were synthesized by the thermal co-precipitation technique at a lower temperature. X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), FT-Raman, UV/visible, and photoluminescence techniques were utilized to determine the phase purity, crystal phase, thermal stability, exterior behavior, optical properties, colloidal stability, and luminescent properties. The XRD results showed the different crystal phases in each nanoproduct. The TGA studies exhibited slight degradation at a lower temperature, which suggests surface water adsorption and organic moieties. The FTIR spectra revealed the existence of the IR bands related to hydroxyl and (C O) groups, suggesting the presence of organic moieties. The absorption spectra and optical bandgap energies were measured in aqueous media for the determination of the colloidal dispersibility in an aqueous solution. The excitation and emission spectra were analyzed, and all observed excitation and emission transitions were labeled. The emission spectra of the LnF3:Tb NPs exhibited distinctive features of the most dominant emission transition located at 543 (5D47F5) under the excitation at 368 nm. Among the presented LnF3 host matrices, YF3:Tb NPs demonstrated high crystallinity along with superior photoluminescence properties. These findings are highly useful in the conjugation of biomolecules for sensitive detection of biomolecules and optical bioimaging.  相似文献   

13.
A series of doped CeF(3): RE(3+) (RE(3+): Tb(3+), Eu(3+) and Dy(3+)) nanoparticles were synthesized, with the aim of obtaining a white light emitting composition, by a simple polyol route at 160°C and characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. Uniformly distributed and highly water-dispersible rectangular nanoparticles (length ~15-20 nm, breadth ~5-10 nm) were obtained. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Lifetime studies revealed that optimum luminescence is observed for 2.5 mol% Dy(3+) and 7.5 mol% Tb(3+). The energy transfer efficiencies (Ce(3+) to activators) were found to be 89% for CeF(3): Tb(3+) (7.5 mol%) nanoparticles and 60% for CeF(3): Dy(3+) (2.5 mol%) nanoparticles. Different concentrations of Tb(3+), Eu(3+) and Dy(3+) were doped to achieve a white light emitting phosphor for UV-based LEDs (light emitting diodes). Finally CeF(3), triply doped with 2.0 mol%Tb(3+), 4.5 mol% Eu(3+) and 3.5 mol% Dy(3+), was found to have impressive chromaticity co-ordinates, close to broad day light. The colloidal solutions of doped CeF(3) nanoparticles emitted bright green (Tb(3+)), blue (Dy(3+)) and white (triply doped) luminescence upon host excitation. Composites of poly methyl methacrylate (PMMA) and poly vinyl alcohol (PVA) were made with CeF(3): 5.0 mol%Tb(3+), CeF(3): 5.0 mol% Dy(3+) and triply doped white light emitting composition. The CeF(3)/PMMA (PVA) nanocomposite films, so obtained, are highly transparent (in the visible spectral range) and exhibit strong photoluminescence upon UV excitation.  相似文献   

14.
Under 980?nm near-infrared (NIR) excitation, upconversion luminescent (UCL) emission of GdF(3):Yb,Er upconversion nanoparticles (UCNPs) synthesized by a simple and green hydrothermal process can be tuned from yellow to red by varying the concentration of dopant Li(+) ions. A possible mechanism for enhanced red upconverted radiation is proposed. A layer of silica was coated onto the surface of GdF(3):Yb,Er,Li UCNPs to improve their biocompatibility. The silica-coated GdF(3):Yb,Er,Li UCNPs show great advantages in cell labeling and in vivo optical imaging. Moreover, GdF(3) UCNPs also exhibited a positive contrast effect in T(1)-weighted magnetic resonance imaging (MRI). These results suggest that the GdF(3) UCNPs could act as dual-modality biolabels for optical imaging and MRI.  相似文献   

15.
采用水热法制备了Er3 离子浓度为3%,yb3 离子浓度分别为10%,20%的GdF3:Er3 ,Yb3 .XRD结果表明:合成的样品均为正交结构的GdF3,Cd0.87Yb0.10Er0.03F3和Gd0.77Yb0.20Er0.03F3样品的晶粒尺寸分别为28和26 nm.研究了980 nm红外光激发的上转换发射光谱.结果表明:红光和绿光发射分别来自于Er3 离子的2H11/2,4S3/2→4I15/2和4F9/2→4I15/2跃迁.样品的绿光发射强度较红光发射强.但绿光和红光发射的相对强度比例与Yb3 离子浓度有关.对Gd0.87Yb0.10Er0.03F3和Gd0.77Yb0.20Er0.03F3样品中可能的上转换发光机制进行了讨论.  相似文献   

16.
In this study, varying % Bi-doped on 1% Ce-doped ZnO (1CZ) nanoparticles (X% B-1CZ) were synthesized via a facile, simple, low-cost, sol–gel process. Various characterization techniques were employed to characterize the synthesized compound, while the dielectric properties i.e. dielectric constant, dielectric loss and AC conductivity against frequency were studied with the help of a precision impedance analyzer. It was observed that by increasing bismuth content in the nanoparticles, the dielectric constant also increased in the range (1.47 × 106 – 4.02 × 106) at 20 Hz, and vice versa for dielectric loss decreased from 1.05 × 106 to 0.39 × 106. The role of prepared compounds as photocatalysts was also investigated against methylene blue under ultraviolet irradiation. The degradation efficiency, as well as the dielectric properties of 7% Bi-doped on 1% Ce-doped ZnO (7%B-1CZ), were found to be the best. Overall, it was found that the synthesized compounds proved promising candidates with enhanced photocatalytic & dielectric properties and hence could safely be employed for environmental remediation purposes and energy storage devices.  相似文献   

17.
In this paper, we present the results of the terahertz measurements of liquid crystal (LC) ferroelectric BaTiO3 nanoparticles (nps) suspensions in the range of frequency from 0.3 up to 3.0 THz. Two different sol-gel methods and the harvesting technique were used to fabricate the nanoparticles. Five LC materials served as hosts for the suspensions: two single compounds: 6CHBT and 2,3′,5′-trifluoro-4-(4-pentylcyclohexyl)-4′-(trifluoromethoxy)-1,1′-biphenyl, and three mixtures: 1867, 2037 and 2020. We characterise, for the first time, the refractive indices and absorption parameters of suspensions with harvested nps in the terahertz range and show how the process of the nps’ preparation affects their response. We observed the increase of birefringence for few LC suspensions in comparison with the pure LCs. The highest increase of birefringence was for 2020 suspension with one kind of ferroelectric nps. On the other hand in most cases the addition of ferroelectric nps to LC causes the increase of its absorption in the THz range. The measurements of LCs terahertz properties by using time-pulsed spectrometer were performed.  相似文献   

18.
We study the effects of doped (1%wt and 2%wt) silver nanoparticles on material properties of nematic liquid crystal: 4-pentyl-4′-cyanobiphenyl. Using differential scanning calorimetry, electrical and dielectric measurements methods, we show that the doped NPs do not affect the nematic’s phase clearing point, lower the dielectric anisotropy, viscosity, switching-off time, and increase the threshold voltage and elasticity of the nematic. We report that the doped materials temperature behaviour of Frederick’s transition threshold voltage and switching-off time, deviates from the expected behaviour for pristine nematics. To explain this anomalous behaviour, we perform data analysis of the governing Frederick’s transition material parameters of studied samples. We show that the elastic parameter of doped samples is not following the predictions of Maier–Saupe theory, which is valid for conventional nematics. We report that the doped samples temperature behaviour of the elastic parameter follows the predictions of the Gelbart and Ben-Shaul theory.  相似文献   

19.
《印度化学会志》2021,98(11):100197
Herein we report an eco-friendly and cost efficient synthesis of Fe doped ZnO (TPFZO) nanoparticles using the extract of Thespesia polpulanea flowers as a stabilizing agent. The synthesized NPs have been characterized by XRD, FT-IR, UV-DRS, SEM, EDAX and TEM studies. The synthesized NPs were found to have the crystallite size in the range of 30–60 ​nm. The calculated band gap energies for ZO and TPFZO nanoparticles were 3.00 ​eV and 1.97 ​eV respectively. The size distribution of the ZO and TPFZO obtained from TEM were observed to be lying in the range 50–120 ​nm and 4–22 ​nm respectively. The interaction of TPFZO NPs with bovine serum albumin (BSA) has been studied using fluorescence and absorption titration methods. The results indicated that the nanoparticles quenched the BSA fluorescence at 340 ​nm via static quenching mode having a bimolecular quenching rate constant value of 6.21 ​× ​1013 Lmol−1s−1.  相似文献   

20.
以PEG-2000、柠檬酸和甘氨酸为表面活性剂,采用水热法制备出扁平纳米棒、纳米花和纳米片状的GdF3∶Eu3+发光材料,并对其结构和性能进行了表征.XRD结果表明,所得样品均为正交晶系.FESEM照片表明,使用不同表面活性剂所制备的产物形貌不同.研究了以PEG-2000为表面活性剂时反应物浓度对产物形貌的影响,并对其生长机理进行了探讨.荧光光谱表明,在不同波长激发光的照射下,GdF3∶Eu3+纳米晶的最强发射峰均位于591 nm处,对应于Eu3+的5D0→7F1磁偶极跃迁.GdF3∶Eu3+的Gd3+-Eu3+之间发生了有效的能量传递.不同形貌样品的发光强度不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号