首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Delineation of the gastrointestinal tract in magnetic resonance imaging (MRI) remains a problem. Ferric ammonium citrate is paramagnetic, producing a high MRI signal intensity by virtue of its spin-lattice (T1) relaxation rate enhancement properties. Water is diamagnetic, producing a low MRI signal intensity, especially with short TR and TE times. To compare efficacy for gastrointestinal contrast alteration, ferric ammonium citrate was administered to 18 patients and water was given to 10 patients. Spin-echo imaging at 0.35T was performed after administration of these agents. Ferric ammonium citrate produced high signal intensity within the esophagus, stomach, duodenum, and small intestine that aided in the differentiation of the gastrointestinal tract from adjacent tumors, vessels, and viscera. Delineation of the gut wall was superior using ferric ammonium citrate compared to that produced by water. Delineation of the margins of the pancreas, liver, and kidney from adjacent gastrointestinal tract was also better with ferric ammonium citrate. Optimal distinction between bowel and fat was better with water. Longer TE times (75 to 200 ms) may allow improved contrast between gut and intrabdominal fat using ferric ammonium citrate.  相似文献   

3.
Functional MRI is most commonly used to study the local changes in blood flow that accompanies neuronal activity. In this work we introduce a new approach towards acquiring and analyzing fMRI data that instead provides the potential to study the initial oxygen consumption in the brain that accompanies activation. As the oxygen consumption is closer in timing to the underlying neuronal activity than the subsequent blood flow, this approach promises to provide more precise information about the location and timing of activity. Our approach is based on using a new single shot 3D echo-volumar imaging sequence which samples a small central region of 3D k-space every 100ms, thereby giving a low spatial resolution snapshot of the brain with extremely high temporal resolution. Explicit and simple rules for implementing the trajectory are provided, together with a straightforward reconstruction algorithm. Using our approach allows us to effectively study the behavior of the brain in the time immediately following activation through the initial negative BOLD response, and we discuss new techniques for detecting the presence of the negative response across the brain. The feasibility and efficiency of the approach is confirmed using data from a visual-motor task and an auditory-motor-visual task. The results of these experiments provide a proof of concept of our methodology, and indicate that rapid imaging of the initial negative BOLD response can serve an important role in studying cognition tasks involving rapid mental processing in more than one region.  相似文献   

4.
Access to Magnetic Resonance Imaging (MRI) across developing countries ranges from being prohibitive to scarcely available. For example, eleven countries in Africa have no scanners. One critical limitation is the absence of skilled manpower required for MRI usage. Some of these challenges can be mitigated using autonomous MRI (AMRI) operation. In this work, we demonstrate AMRI to simplify MRI workflow by separating the required intelligence and user interaction from the acquisition hardware. AMRI consists of three components: user node, cloud and scanner. The user node voice interacts with the user and presents the image reconstructions at the end of the AMRI exam. The cloud generates pulse sequences and performs image reconstructions while the scanner acquires the raw data. An AMRI exam is a custom brain screen protocol comprising of one T1-, T2- and T2*-weighted exams. A neural network is trained to incorporate Intelligent Slice Planning (ISP) at the start of the AMRI exam. A Look Up Table was designed to perform intelligent protocolling by optimizing for contrast value while satisfying signal to noise ratio and acquisition time constraints. Data were acquired from four healthy volunteers for three experiments with different acquisition time constraints to demonstrate standard and self-administered AMRI. The source code is available online. AMRI achieved an average SNR of 22.86 ± 0.89 dB across all experiments with similar contrast. Experiment #3 (33.66% shorter table time than experiment #1) yielded a SNR of 21.84 ± 6.36 dB compared to 23.48 ± 7.95 dB for experiment #1. AMRI can potentially enable multiple scenarios to facilitate rapid prototyping and research and streamline radiological workflow. We believe we have demonstrated the first Autonomous MRI of the brain.  相似文献   

5.
6.
《Comptes Rendus Physique》2010,11(2):136-148
Magnetic resonance imaging (MRI) and fast field-cycling (FFC) NMR are both well-developed methods. The combination of these techniques, namely fast field-cycling magnetic resonance imaging (FFC-MRI) is much less well-known. Nevertheless, FFC-MRI has a number of significant applications and advantages over conventional techniques, and is being pursued in a number of laboratories. This article reviews the progress in FFC-MRI over the last two decades, particularly in the areas of Earth's field and pre-polarised MRI, as well as free radical imaging using field-cycling Overhauser MRI. Different approaches to magnet design for FFC-MRI are also described. The paper then goes on to discuss recent techniques and applications of FFC-MRI, including protein measurement via quadrupolar cross-relaxation, contrast agent studies, localised relaxometry and FFC-MRI with magnetisation-transfer contrast.  相似文献   

7.
Electric current-induced phase alternations have been imaged by fast magnetic resonance image (MRI) technology. We measured the magnetic resonance phase images induced by pulsed current stimulation from a phantom and detected its sensitivity. The pulsed current-induced phase image demonstrated the feasibility to detect phase changes of the proton magnetic resonance signal that could mimic neuronal firing. At the present experimental setting, a magnetic field strength change of 1.7 +/- 0.3 nT can be detected. We also calculated the averaged value of the magnetic flux density BT parallel to B0 produced by electric current I inside the voxel as a function of the wire position. The results of the calculation were consistent with our observation that for the same experimental setting the current-induced phase change could vary with location of the wire inside the voxel. We discuss our findings in terms of possible direct MRI detection of neuronal activity.  相似文献   

8.
We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nm slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nm. This was achieved by force detection of the magnetic resonance, magnetic resonance force microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs created spin polarization up to 12 times larger than the thermal nuclear spin polarization at 5K and 4T. The experiment was sensitive to sample volumes of 50 microm(3) containing approximately 4 x 10(11)71 Ga/Hz. These results demonstrate the ability of force-detected magnetic resonance to apply magnetic resonance imaging to semiconductor devices and other nanostructures.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
核磁共振成像系列实验教学探讨   总被引:3,自引:1,他引:3  
蒋莹莹  张洁天  吕斯骅 《物理实验》2007,27(1):20-23,33
超小型核磁共振成像仪已经应用在近代物理实验教学中,该仪器可以研究各种样品的脉冲核磁共振.本文从教学内容和教学方法上对核磁共振成像实验进行了探讨·  相似文献   

17.
18.
Two rapid, pure phase encode, centric scan, Single Point Ramped Imaging with T1-Enhancement (SPRITE) MRI methods are described. Each retains the benefits of the standard SPRITE method, most notably the ability to image short T2* systems, while increasing the sensitivity and generality of the technique. The Spiral-SPRITE method utilizes a modified Archimedean spiral k-space trajectory. The Conical-SPRITE method utilizes a system of spirals mapped to conical surfaces to sample the k-space cube. The sampled k-space points are naturally Cartesian grid points, eliminating the requirement of a re-gridding procedure prior to image reconstruction. The effects of transient state behaviour on image resolution and signal/noise are explored.  相似文献   

19.
磁共振成象新进展   总被引:2,自引:0,他引:2  
叶朝辉 《物理》2004,33(1):12-17
磁共振成象(MRI)已经成为生命科学研究和医疗诊断的有力手段,因此荣获2003年诺贝尔生理学或医学奖.文章概述了磁共振成象的新近进展,包括医疗成象、脑功能成象、显微成象、活体磁共振波谱等方面.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号