首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
In this paper, we introduce a pair of mutually conjugate multipartite entangled state representations for defining the squeezing operator of entangled multipartite Sn(λ) which involves an n-mode bosonic operator realization of the SU(1,1) Lie algebra. This operator squeezes the multipartite entangled state in a natural way. We discuss the transform properties of aj and \(a_{j}^{\dagger }\) under the operation of Sn(λ) and derive the interaction Hamiltonian which can generate such an evolution. In addition, the corresponding multipartite squeezed vacuum state |λ〉 is obtained. Based on this, the variances of the n-mode quadratures in |λ〉 are evaluated and the violation of the Bell inequality for |λ〉 is examined by using the formalism of Wigner representation.  相似文献   

2.
In the short contribution, we consider inequalities of confirming genuine multipartite entanglement. We have a better entanglement witness for a particular mixed state to test genuine multipartite entanglement. Our physical situation is that we measure Pauli observables σ x , σ y , and σ z per side. If the reduction factor is greater than 0.4, then we can confirm the measured quantum state is genuine multipartite entangled experimentally.  相似文献   

3.
We investigate tripartite entanglement in an atom-cavity-optomechanical system consisting of a two-level atom coupled to a cavity with an oscillating mirror at one end. The maximally entangled state between the atom, the field and the oscillating mirror can be prepared in the ideal case. It is shown that the atomic coherent angle that is relatively small makes tripartite entanglement much stronger against dissipative effects in a finite time interval. The parameter k plays a very important role in the oscillating frequency of the tripartite entanglement. More importantly, the π-tangle decays more quickly with the increasing of spontaneous emission rate γ and mean photon number n.  相似文献   

4.
For the formulation of Bell inequalities, it is important to include not just N-site correlation functions, but also (N-n)-site correlation functions. In this article, we focus on a three-qubit Bell inequality, which has been shown to be a good candidate for generalizing Gisin’s theorem to three qubits. The three-qubit Bell inequality can be used to detect the W-type entanglement in a proposed experiment.  相似文献   

5.
We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.  相似文献   

6.
Monogamy of entanglement is a fundamental property of multipartite entangled states. In this article, due to the convexity of Trρq with respect to q when q ≥ 1, we give a monogamy-like relation in terms of Tsallis-q entanglement entropy of assistance (TqEEA) for pure states over an n- partite any dimensional system and monogamy-like relations in terms of Tsallis-q entanglement entropy (TqEE) for mixed states for any dimensional system, we also give a lower bound for the TqEE of a four-partite pure state. At last, we show that the generalized W-class states satisfy the polygamy relation in terms of TqEE when q = 2.  相似文献   

7.
We propose an entanglement measure for pure M ? N bipartite quantum states. We obtain the measure by generalizing the equivalent measure for a 2 ? 2 system, via a 2 ? 3 system, to the general bipartite case. The measure emphasizes the role Bell states have, both for forming the measure and for experimentally measuring the entanglement. The form of the measure is similar to the generalized concurrence. In the case of 2 ? 3 systems, we prove that our measure, which is directly measurable, equals the concurrence. It is also shown that, in order to measure the entanglement, it is sufficient to measure the projections of the state onto a maximum of M(M ? 1)N(N ? 1)/2 Bell states.  相似文献   

8.
In this paper, we construct a parameterized form of unitary \(\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )\) matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters ?? 1 and ?? 2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to ?? 1 = ?? 2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere.  相似文献   

9.
In this paper, we propose a scheme for quantum information splitting based on the non-maximally entangled four-qubit state in order to realize the splitting of the specific two-qubit state |ψ A B =x|00〉+y|11〉. The information splitter will safely share an state to the receiver with help of the controller. Through introducing an auxiliary system and applying several appropriate unitary transformations the information receiver can reconstruct the original state sent by the information splitter. Due to the non-maximally entangled four-qubit state, the total probability that the receiver obtains the original information is P. Furthermore, we discuss the relationship between the successful splitting probability and the concurrence of the entangled state and get a specific expression. In addition, the scheme is tested against external and internal attacks, and we define a function to characterise the security with the concurrence of the entanglement.  相似文献   

10.
We investigate quantum echo control and Bell state swapping for two atomic qubits (TAQs) coupling to two-mode vacuum cavity field (TMVCF) environment via two-photon resonance. We discuss the effect of initial entanglement factor ?? and relative coupling strength R=g1/g2 on quantum state fidelity of TAQs, and analyze the relation between three kinds of quantum entanglement(C(ρa),C(ρf),S(ρa)) and quantum state fidelity, then reveal physical essence of quantum echo of TAQs. It is shown that in the identical coupling case R=1, periodic quantum echo of TAQs with π cycle is always produced, and the value of fidelity can be controlled by choosing appropriate ?? and atom-filed interaction time. In the non-identical coupling case R≠1, quantum echoes with periods of π, 2π and 4π can be formed respectively by adjusting R. The characteristics of quantum echo results from the non-Markovianity of TMVCF environment, and then we propose Bell state swapping scheme between TAQs and two-mode cavity field.  相似文献   

11.
The idea of secure quantum information exchange (SQIE) [J. Phys. B: At. Mol. Opt. Phys.44, 115504 (2011)] is introduced for the secure exchange of single qubit information states between two legitimate users, Alice and Bob. In the present paper, we extend this original SQIE protocol by presenting a scheme, which enables the secure exchange of n-single qubit information states among the n nodes of a quantum network, with the aid of a special kind of 4n-qubit entangled state and the classical assistance of an extra participant Charlie. For experimental realization of our extended SQIE protocol, we suggest an efficient scheme for the generation of a special kind of 4n-qubit entangled state using the interaction between highly detuned Λ-type three-level atoms and optical coherent field. Further, by discussing the various experimental parameters, we show that the special kind 4n-qubit entangled state can be generated with the presently available technology.  相似文献   

12.
In this paper, a theoretical scheme for tripartite quantum controlled teleportation is presented using the entanglement property of seven-qubit cluster state. This means that Alice wants to transmit a entangled state of particle a to Bob, Charlie wants to transmit a entangled state of particle b to David and Edison wants to transmit a entangled state of particle c to Ford via the control of the supervisor. In the end, we compared the aspects of quantum resource consumption, operation complexity, classical resource consumption, quantum information bits transmitted, success probability and efficiency with other schemes.  相似文献   

13.
In a previous paper, we proved that, in the appropriate asymptotic regime, the limit of the collection of possible eigenvalues of output states of a random quantum channel is a deterministic, compact set Kk,t. We also showed that the set Kk,t is obtained, up to an intersection, as the unit ball of the dual of a free compression norm. In this paper, we identify the maximum of \({\ell^p}\) norms on the set Kk,t and prove that the maximum is attained on a vector of shape (a, b, . . . , b) where ab. In particular, we compute the precise limit value of the minimum output entropy of a single random quantum channel. As a corollary, we show that for any \({\varepsilon > 0}\), it is possible to obtain a violation for the additivity of the minimum output entropy for an output dimension as low as 183, and that for appropriate choice of parameters, the violation can be as large as \({\log 2 -\varepsilon}\). Conversely, our result implies that, with probability one in the limit, one does not obtain a violation of additivity using conjugate random quantum channels and the Bell state, in dimension 182 and less.  相似文献   

14.
Protection of entanglement from disturbance of the environment is an essential task in quantum information processing. We investigate the effect of the weak measurement and reversal (WMR) on the protection of the entanglement for an arbitrarily entangled two-qubit pure state from these three typical quantum noisy channels, i.e., amplitude damping channel, phase damping channel and depolarizing quantum channel. Given the parameters of the Bell-like initial qubits’ state |ψ〉 = a|00〉 + d|11〉, it is found that the WMR operation indeed helps for protecting distributed entanglement from the above three noisy quantum channels. But for the Bell-like initial qubits’ state |?〉 = b|01〉 + c|10〉, the WMR operation only protects entanglement in the amplitude damping channel, not for the phase damping and depolarizing quantum channels. In addition, we discuss how the concurrence and the success probability behave with adjusting the weak or the reversal weak measurement strength.  相似文献   

15.
In this paper, we will explore the essence of the phenomenon that state with less entanglement may generate greater Bell violation in the two-qubit Bell tests with CH-type inequalities, i.e., more nonlocality with less entanglement. We will show that this interesting but counterintuitive phenomenon is caused by the rotational asymmetry of the nonmaximally entangled state in the measurement plane. This asymmetry allows the both-side detection probabilities and the one-side detection probabilities obtain their maximal values with nonmaximally entangled state. But the maximal Bell violation may not always happen on nonmaximally entangled state, because these probabilities will compete with each other, and the Bell violation behaves differently for various CH-type inequalities.  相似文献   

16.
Using the concurrence (C) criterion, we investigate the thermal entanglement properties in two-qubit spin squeezing model for two kinds of squeezing interaction: one-axis twisting model (OATM) and two-axis countertwisting model (TACM) with a transverse field. To the OATM, in the limit case of T→0, the ground state entanglement is initially increased from zero to the maximum value, then decreased in a period of time and suddenly disappeared finally with further enhancing the external magnetic field Ω. One interesting thing is that instead of decaying slowly to zero the entanglement is sudden disappeared with further enhancing Ω or μ (the spin squeezing interaction in X direction), and decreasing the parameter μ or Ω can obviously broaden the scope of entanglement exists. For the finite temperature case, a novelty point is the sudden birth phenomenon occured in the behaviors of entanglement, it is initially to be zero (persists for some time), with further improving Ω and μ the entanglement will be suddenly appeared, and the time interval (persists to be zero) before sudden birth is obviously prolonged with decreasing two parameters. The temperature range of entanglement exists can be extended evidently with increasing μ or Ω, and one can obtain entanglement at higher temperature through changing them. When to the TACM, the ground state entanglement is initially decreased from the maximum value and then suddenly disappeared with increasing Ω. While increasing γ the ground state entanglement is increased initially from zero to the maximum value and then sudden disappeared with further improving γ (the spin squeezing interaction in XY plane), proper tuing γ or Ω can prolong the lives of entanglement evidently. For the finite temperature case, the sudden birth phenomenon also occured in the the evoluted concurrence, the variation of parameters Ω and γ can reduce the time interval before sudden birth. The influence of the temperature T on thermal entanglement property is also investigated. The temperature range of entanglement existence can be extended evidently with increasing γ, one can obtain entanglement at higher temperature through changing parameters γ and Ω.  相似文献   

17.
It is a well known fact that a common common causal explanation of the EPR scenario which consists in providing a local, non-conspiratorial common common cause system for a set of EPR correlations is excluded by various Bell inequalities. But what if we replace the assumption of a common common cause system by the requirement that each correlation of the set has a local, non-conspiratorial separate common cause system? In the paper we show that this move does not yield a solution by providing a general recipe how to derive any Bell(δ) inequality—that is an inequality differing from some Bell inequality in a term of order of δ—from the assumption that an appropriate set of almost perfect anticorrelations has a separate common causal explanation.  相似文献   

18.
Using the thermo entangled state approach, we successfully solve the master equation of a damped harmonic oscillator affected by a linear resonance force in a squeezed heat reservoir, and obtain the analytical evolution formula for the density operator in the infinitive Kraus operator-sum representation. Interestingly, the Kraus operators Ml,m,n,r and \(\mathfrak {M}_{l,m,n,r}^{\dag }\) are not Hermite conjugate, but they are still trace-preserving quantum operations because of the normalization condition. We also investigate the evolution for an initial coherent state for damping in a squeezed heat reservoir, which shows that the initial coherent state decays to a complex mixed state as a result of damping and thermal noise.  相似文献   

19.
In this work, we study the so-called quantitative complementarity quantities. We focus in the following physical situation: two qubits (q A and q B ) are initially in a maximally entangled state. One of them (q B ) interacts with a N-qubit system (R). After the interaction, projective measurements are performed on each of the qubits of R, in a basis that is chosen after independent optimization procedures: maximization of the visibility, the concurrence, and the predictability. For a specific maximization procedure, we study in detail how each of the complementary quantities behave, conditioned on the intensity of the coupling between q B and the N qubits. We show that, if the coupling is sufficiently “strong,” independent of the maximization procedure, the concurrence tends to decay quickly. Interestingly enough, the behavior of the concurrence in this model is similar to the entanglement dynamics of a two qubit system subjected to a thermal reservoir, despite that we consider finite N. However, the visibility shows a different behavior: its maximization is more efficient for stronger coupling constants. Moreover, we investigate how the distinguishability, or the information stored in different parts of the system, is distributed for different couplings.  相似文献   

20.
We investigate the violation factor of the Bell-Mermin inequality. Until now, we use an assumption that the results of measurement are ±1. In this case, the maximum violation factor is 2(n?1)/2. The quantum predictions by n-partite Greenberger-Horne-Zeilinger (GHZ) state violate the Bell-Mermin inequality by an amount that grows exponentially with n. Recently, a new measurement theory based on the truth values is proposed (Nagata and Nakamura, Int. J. Theor. Phys. 55:3616, 2016). The values of measurement outcome are either +1 or 0. Here we use the new measurement theory. We consider multipartite GHZ state. It turns out that the Bell-Mermin inequality is violated by the amount of 2(n?1)/2. The measurement theory based on the truth values provides the maximum violation of the Bell-Mermin inequality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号