首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binary mixed monolayers of octadecanoic acid and three related amphiphilic compounds (octadecanamide, octadecylamine, octadecylurea) have been investigated at the air/water interface by surface pressure–area (Π–Â) isotherms and their resistances to water evaporation (r). In addition, the excess free energies of mixing (ΔGE) were calculated using the Goodrich method. Both the ln r vs x and ΔGE vs x plots exhibit marked deviations from linearity, indicating a high degree of miscibility and nonideal behavior of the components in the mixed films. For all of these binary systems the excess free energies of mixing have been found to be minimum for a certain composition corresponding almost to a maximum in evaporation resistances. Weak interactions were detected in octadecanoic acid/octadecanamide monolayers, whereas significant condensation effects were observed in 1 : 1 mixed films containing octadecanoic acid and octadecylamine. This is attributed to an acid–base equilibrium followed by the formation of a well-ordered arrangement of COO and NH3+ head groups bound to each other by electrostatic forces. The unusual polymorphism of octadecylurea monolayers could be influenced by adding small amounts of octadecanoic acid. The formation of the low-temperature phase (β-phase) is completely suppressed, if the acid content exceeds 8 mol%. The octadecanoic acid seems to induce the formation of the high-temperature phase (α-phase), which is characterized by a vertical orientation of the hydrocarbon chains.  相似文献   

2.
The exchange of the original cation present on a Laponite clay (usually Na+) for heavy atoms such as Rb+, Cs+, and Tl+ significantly alters the emission characteristics of some aromatic hydrocarbons (p-terphenyl, naphthalene, pyrene, and biphenyl). The increase of the atomic mass of the cation induces a decrease of the fluorescence emission simultaneous with an increase of the emission in the region of lower energies of the spectra, ascribed to the phosphorescence of those hydrocarbons. Time-resolved experiments for the pyrene–clay system showed a decrease of singlet lifetimes for the heavier atoms. Hydrocarbon aggregates were also detected from both the emission spectra and the time-resolved studies. The “excimer-like” emission showed longer lifetimes (10–25 ns) than the monomolecular hydrocarbons (1–3 ns), as already found for other similar systems. The amount of aggregates increased for the heavier cations due to the smaller surface available on the clay particles. Experiments increasing the amount of Tl+ in samples containing a constant concentration of naphthalene allowed evaluation of the distance between the heavy atoms and the probe on the clay surface. The Perrin model treatment was used and resulted in approximately R0=9.2 Å.  相似文献   

3.
Adenine-capped Q-CdS has been synthesized in an aqueous medium. IR spectroscopy indicates an interaction between Q-CdS and adenine through Cd2+. The amount of adenine controls the size of the clusters. A typical 5×10−3 mol dm−3 of adenine produces nanoclusters having the onset of absorption and an emission band at 2.8 and 2.35 eV, respectively. Adenine binds to the shallower traps and enhances the emission intensity of the 530-nm band without causing any shift in emission. Thermolysis of these colloids leads to the production of larger CdS clusters with changed electronic properties. Relaxation kinetics of charge carriers shows their average lifetime to increase with a decrease in particle size. Illumination of these particles does not lead to their photodissolution. This catalyst is, however, photoactive. The addition of indole causes the quenching of its emission. The photocatalytic oxidation of indole produces indigo with a quantum efficiency of 0.03.  相似文献   

4.
Silica from leached chrysotile fibers (SILO) was silanized with trialkoxyaminosilanes to yield inorganic–organic hybrids designated SILx (x=1–3). The greatest amounts of the immobilized agents were quantified as 2.14, 1.90, and 2.18 mmol g−1 on SIL1, SIL2, and SIL3 for –(CH2)3NH2,–(CH2)3NH(CH2)2NH2, and –(CH2)3NH(CH2)2NH(CH2)2NH2 groups attached to the inorganic support. The infrared spectra for all modified silicas showed the absence of the Si–OH deformation mode, originally found at 950 cm−1, and the appearance of asymmetric and symmetric C–H stretching bands at 2950 and 2840 cm−1. Other important bands associated with the organic moieties were assigned to νas(NH) at 3478 and νsym(NH) at 3418 cm−1. The NMR spectrum of the solid precursor material suggested two different kinds of silicon atoms: silanol and siloxane groups, between −90 and 110 ppm; however, additional species of silicon that contain the organic moieties bonded to silicon at −58 and −66 ppm appeared after chemical modification. These modified silicas showed a high adsorption capacity for cobalt and copper cations in aqueous solution, in contrast to the original SILO matrix, confirming the unequivocal anchoring of silylating agents on the silica surface.  相似文献   

5.
Although hydrotropy is extensively used in industry, the molecular mechanism of hydrotropic solubilization has not been completely elucidated yet. In this paper the interaction between a nonionic surfactant (ethoxylated fatty alcohol containing between five and six oxyethylenic units) and sodium p-toluene sulfonate is examined. Surface tension measurements confirm that the hydrotropic effect occurs at a concentration in which the hydrotropes self-associate. Photon correlation spectroscopy studies show that for this concentration of hydrotropes a drastic reduction in the surfactant micellar radius occurs. Furthermore the luminescence of the hydrotrope used as a fluorescence probe indicates that at low concentrations p-toluene sulfonate dissolves in the surfactant micelles but beyond the minimum concentration for hydrotropic solubilization the hydrotrope is present in the aqueous phase. These results suggest that the hydrotropic effect is related to alterations in the water structure induced by the hydrotrope molecules and to the presence of hydrotrope aggregates that furnish an appropriate niche for the surfactant amphiphile.  相似文献   

6.
The adsorption behavior of 1,4-benzenedithiol (1,4-BDT) on colloidal gold and silver surfaces has been investigated by means of surface-enhanced Raman scattering (SERS). 1,4-BDT chemisorbed dissociatively on both gold and silver surfaces but as mono- and dithiolate, respectively. Regardless of the bulk concentration of 1,4-BDT, only a monolayer was assembled on the silver surface with a flat orientation by forming two Ag–S bonds. On the gold surface, the monothiolate species,1,4-BDT−1, appeared to assume a rather flat orientation at a very low surface coverage, but as the surface coverage was increased, the adsorbate took a perpendicular orientation. Furthermore, when the bulk concentration of 1,4-BDT was close to that required for a full-monolayer coverage limit, a band assignable to the S–S stretching vibration appeared at 536 cm−1 in the gold sol SERS spectra. A separate ellipsometry measurement performed with vacuum-evaporated gold substrates revealed that up to tetralayers could be assembled on gold in 1 mM n-hexane solution of 1,4-BDT while at best a bilayer formed in either methanol or ethanol solution. The different adsorbate structure of 1,4-BDT on gold and silver was overall quite comparable to that of p-xylene-α,α′-dithiol.  相似文献   

7.
Reversing-pulse electric birefringence (RPEB) of a nearly monodisperse iron(III) hydroxide oxide sample in the β-form (β-FeOOH) was measured at 25°C and at a wavelength of 633 nm in aqueous media in the presence of NaCl. The concentrations of β-FeOOH and added NaCl varied between 0.00111 and 0.0555 g/L and 0.03 and 2.0 mM, respectively. Except for the suspensions with high salt concentrations, each RPEB signal showed a dip or minimum in the reverse process upon electric field reversal, together with a smooth rise in the buildup and a fall in the decay process. The observed signals were analyzed with a new RPEB theory, which takes into account not only the permanent electric dipole moment (μ) but also the root-mean-square ionic dipole moment (m21/2) due to the ion fluctuation in ion atmosphere, in addition to the field-induced electronic (covalent) dipole moment Δα′ E. The results showed that the slowly fluctuating moment of m21/2 is by far the most predominant one for the field orientation of the β-FeOOH particle, though the permanent dipole moment μ may not be completely excluded. The rotational relaxation time of the whole particle was evaluated from the decay signal, while the relaxation time for fluctuating ions was estimated from RPEB signal fitting. The sign of the steady-state birefringence for β-FeOOH suspensions was positive without exception under the present conditions. The birefringence signals in the steady state (δ/d) were proportional to the second power of the applied field strength (E) in the low field region; thus, the Kerr law was verified to hold for β-FeOOH suspensions. The specific Kerr constant was evaluated for each suspension by extrapolating the values of δ/d to zero field (E→0).  相似文献   

8.
The S-center radical (ANS·) of sodium 1-anilino-8-naphthalene sulfate (ANS) generated by photoinduced charge transfer in ANS/CdS and ANS/CdS/β-cyclodextrin(β-CD) systems has been studied by using spin trapping electron spin resonance techniques, UV-visible spectroscopic methods, and fluorescence spectroscopic methods. It was found that the S-centered radical (ANS·) was produced by the charge transfer reaction between the ground state ANS and the positive hole h+(CdS) from the valence band of CdS colloids, by the charge transfer from the excited singlet state 1ANS* to the conduction band of CdS colloids, or by both in the ANS/CdS and ANS/CdS/β-CD systems. The ESR signal intensity of the spin adduct (5,5′-dimethyl-1-pyrroline-N-oxide (DMPO)–ANS)·, which is formed from ANS· trapped by DMPO, in the latter system is 15 times stronger than that in the former system. The apparent association constants between ANS and CdS colloids in the absence and presence of β-CD determined from fluorescence quenching experiments are 1097 and 1606 M−1, respectively. From ESR and fluorescence results, it is estimated that the efficiency of photoinduced charge transfer from ANS to CdS colloids in the ANS/CdS/β-CD system is 12.5 times that in the ANS/CdS system.  相似文献   

9.
The influence of the nonionic polymer poly(N-vinyl-2-pyrrolidone) (PVP) in comparison to the surfactant 1-octyl-2-pyrrolidinone (OP) on the phase behavior of the system SDS/pentanol/xylene/water was studied. In both modified systems a strong increase in the water solubilization capacity was found, accompanied by a change in the spontaneous curvature toward zero. In the polymer-modified system an isotropic phase channel is formed with increasing polymer content that connects the L1 and the L2 phase. The lamellar liquid crystalline phase is destabilized in both cases. In the L1 phase the adsorption of PVP at the surface of the microemulsion droplets and the formation of a cluster-like structure is proven by several methods like 13C NMR T1 relaxation time measurments, zeta potential measurements, and rheology. In the L2 phase a modification of the interface of the inverse droplets is detected by a shift in the percolation boundary (conductivity) and 13C NMR T1 relaxation measurements. The formation of a cluster-like structure can be assumed on the basis of our rheological measurements.  相似文献   

10.
The absorption spectra of 6′-apo-β-caroten-6′-ol (1), 6′-apo-β-caroten-6′-oic acid (2), and ethyl 6′-apo-β-caroten-6′-oate (3) were analyzed in homogeneous media and in reversed micelles of AOT (sodium 1,4-bis(2-ethylhexyl) sulfosuccinate) in n-heptane. The possible solute–solvent interactions of these compounds were analyzed in pure solvents by Taft and Kamlet's solvatochromic comparison method. These carotenoids show sensitivity similar to that of medium polarity-polarizability as measured by π*. Moreover, the absorption spectra of carotenoid 3 and to much less extent carotenoid 2 display broadening of the visible bands induced by polar solvents characteristic of carotenoids that contain a carbonyl functional group in conjugation with the carbon–carbon π-electron system. They are also sensitive to the ability of the solvent to accept protons in a hydrogen bond interaction measured by β. This sensitivity follows the expected order: 2>1>3. In the reverse micellar system, while the spectra for 3 remain unchanged, the intensity of the absorption band characteristic of n-heptane for 1 and 2 decreases as the AOT concentration increases, and a new band develops. This new band is attributed to the solute bound to the micelle interface. These changes allowed us to determine the binding constant (Kb) between these compounds and AOT. At W0=[H2O]/[AOT]=0 the values of Kb of 326±5 and 6.2±0.3 were found for the acid 2 and the alcohol 1, respectively. The strength of binding is interpreted considering their hydrogen-bond donor ability and the solubility in the organic pseudophase. For 1Kbdecreases as W0 is increased, while for 2 no variation was observed. These effects are discussed in terms of carotenoid–water competition for interfacial binding sites.  相似文献   

11.
The diffusiophoretic motion of a spherical particle in a uniform imposed gradient of a nonionic solute is analyzed for small but finite Péclet numbers. The range of the interaction between the solute molecules and the particle surface is assumed to be small relative to the radius of the particle, but the polarization effect of the mobile solute in the thin diffuse layer surrounding the particle caused by the strong adsorption of the solute is incorporated. A normal flux of the solute and a slip velocity of the fluid at the outer edge of the diffuse layer are used as the boundary conditions for the fluid domain outside the diffuse layer. Through the use of a method of matched asymptotic expansions along with these boundary conditions, a set of transport equations governing this problem is solved in the quasisteady situation and an approximate expression for the diffusiophoretic velocity of the particle good to O(Pe 2) is obtained analytically. The analysis shows that the first correction to the particle velocity is O(Pe 2). The normalized particle velocity is found to decrease monotonically with the Péclet number and to increase monotonically with the dimensionless relaxation coefficient. The stronger the polarization effect in the diffuse layer, the weaker the convective effect on the diffusiophoresis. Received: 25 May 2000 Accepted: 6 September 2000  相似文献   

12.
Iminodiacetic acid (IDA) and octyl moieties were covalently bound on nonporous particles, which were prepared from dispersion polymerization of methyl methacrylate and glycidyl methacrylate. After being charged with copper ions, the IDA-bound particles could specifically adsorb deoxyribonuclease I (DNase I) through the affinity interaction between protein and immobilized metal ion. A mixed-ligand (metal–chelate and octyl–bound) support was obtained after hydrophobic (octyl) groups were also introduced to the particle surface. The affinity adsorption of DNase I on the copper–IDA chelate was influenced by interaction between the protein and the bound octyl group. Both the affinity and the hydrophobic interactions could be well described by the Langmuir isotherms. The equilibrium adsorption constants were estimated separately to be 0.96 and 0.50 liter g−1 for affinity and hydrophobic bindings, respectively. For binding on mixed-ligand support, the adsorption constant was 0.45 liter g−1. It was evident that both affinity and hydrophobic interactions are involved in the adsorption of proteins onto mixed-ligand particles. Desorption of the inactive proteins from the support was possible by increasing the hydrophobicity of the solution.  相似文献   

13.
Aggregation behavior in aqueous solution of a series of poly (ethylene glycol) (PEG)-based macromonomers with methacryloyl group as the only hydrophobic segment has been investigated using surface tension, steady-state and time-resolved fluorescence spectroscopy using pyrene as a probe, and small-angle neutron scattering techniques. The general formula of these macromonomers is CH2=C(CH3)–CO–O–Em–CH3, where E is the ethylene glycol unit and m=8 (ME8), 18 (ME18), 49 (ME49), and 120 (ME120). The results indicate that a macromonomer with 8 ethylene glycol units forms as an aggregate above a certain critical concentration, which can be defined as critical aggregation concentration. The observed high value of I1/I3 in pyrene emission spectra at the interface of these aggregates and the inability to scatter a neutron beam by these aggregates indicate that the hydrophobic cluster formed by this macromonomer is remarkably solvated. ME18 has a tendency to aggregate but others do not form any hydrophobic cluster. The homopolymerization behaviors of these macromonomers in an aqueous medium at 70°C are consistent with these possibi- lities.  相似文献   

14.
Influence of electrical double-layer interaction on coal flotation   总被引:5,自引:0,他引:5  
In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.  相似文献   

15.
Polyacrylonitrile (PAN)-based activated carbon fibers (ACFs) prepared by various activation methods were characterized using low-temperature nitrogen adsorption over a wide relative pressure from 10−6 to 1. Nitrogen adsorption is a standard tool for determination of porous structure parameters. In the present work, we carried out extensive adsorption studies of a series of PAN-ACFs activated by different methods. It was shown that the high-resolution αS plot provided valuable information about structural properties of samples under study. The pore size distributions of samples under study were calculated by employing the regularization method according to density functional theory. By these analyses, the pore development and the dominant pores of samples prepared by different methods can be clearly observed. Moreover, the adsorption measurement could provide profound insight into the structural heterogeneity of the ACFs.  相似文献   

16.
Adsorption of amphiphilic dimers is analyzed in the framework of density functional Ono–Kondo theory. There are three configurations for dimers absorbed at a surface: one parallel to the surface and two perpendicular to the surface (AB and BA, with A or B touching the surface, respectively). Densities of molecules in each configuration are calculated from density functional theory and compared to Monte Carlo simulation data. There is good agreement between theory and simulations. It is shown that the parallel configuration is preferred over the perpendicular configuration, except when there are very strong asymmetries in intermolecular forces. In most cases, the parallel configuration is even preferred over the combination of the two perpendicular configurations.  相似文献   

17.
Photoinduced electron-transfer reaction of anthracene with N,N-diethylaniline (DEA) was studied in the SDS (sodium dodecyl sulfate)/BA (benzyl alcohol)/H2O system. In an oil/water microemulsion, only the excited anthracene located at the interface can be quenched by DEA. In a water/oil microemulsion, this quenching reaction occurs in the BA continuous phase. Besides being the quencher of the excited anthracene, DEA could also change the system's structure.  相似文献   

18.
Pseudo-first-order rate constants (kobs) for alkaline hydrolysis of 4-nitrophthalimide show a monotonic decrease with increase in [C12E23]T (total concentration of Brij 35) at constant [CH3CN] and [NaOH]. This micellar effect is explained in terms of a pseudophase micelle model. The rate of hydrolysis becomes too slow to monitor at [C12E23]T≥0.03 M in the absence of cetyltrimethylammonium bromide (CTABr) and at [C12E23]T≥0.04 M in the presence of 0.006–0.02 M CTABr at 0.01 M NaOH. The plots of kobs versus [C12E23]T show minima at 0.006 and 0.01 M CTABr, while such a minimum is not visible at 0.02 M CTABr.  相似文献   

19.
Fumed oxides, such as silica, alumina, titania, and mixed X/silicas (X=Al2O3 (AS), TiO2 (TS), CVD-TiO2, Al2O3/TiO2 (AST)), pristine or covered by carbon deposits formed due to pyrolysis of cyclohexene, were studied using nitrogen adsorption–desorption, photon correlation spectroscopy particle sizing, and electrophoresis. A significant influence of the nature of surface-active sites and structural features of oxides (individual silica, mixed fumed, or prepared using chemical vapor deposition (CVD)) on the pyrolysis of cyclohexene is observed with respect to the pore size distributions due to differences between primary particles in aggregates and on their outer surfaces in the filling of channels by pyrocarbon, resulting also in a decrease in fractal dimension. Structural characteristics and dependences of the particle size distribution and electrokinetic potential of X/SiO2 and C/X/SiO2 on the pH of aqueous suspensions suggest that the carbon deposit covers mainly acidic sites at the X/SiO2 interfaces and X phase patches possessing catalytic activity in pyrolysis, as the negative charge of particles is reduced by pyrocarbon grafting.  相似文献   

20.
Adsorbents synthesized by grafting of titania onto mesoporous silica gel surfaces at different temperatures were studied by means of nitrogen adsorption–desorption and water desorption. The pore size distribution f(Rp) of titania/silica gel depends on the titania concentration (CTiO2) and the temperature of titania synthesis. Nonuniformity of TiO2 phase is maximal at a low CTiO2 value (3.2 wt.% anatase deposited at 473 K), and two peaks of the fractal dimension distribution f(D) are observed at such a concentration of titania, but at larger CTiO2 values, only one f(D) peak is seen. More ordered filling of pores and adsorption sites by nitrogen, reflecting in the shape of adsorption energy distributions f(E) at different pressures of adsorbate, is observed for adsorbent with titania (rutile+anatase) grafted on silica gel at a higher temperature (673 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号