首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoluminescence spectra of silicon samples implanted by 56Fe+ ions [energy, 170 keV; dose, 1×1016, (2–4)×1017 cm?2] and annealed at temperatures of 800, 900, and 1000°C are measured. The structure of the samples at each stage of treatment is investigated using transmission electron microscopy (TEM). It is found that the phase formation and morphology of crystalline iron disilicide precipitates depend on the dose of iron ions and the annealing temperature. A comparison of the dependences of the intensity and spectral distribution of the photoluminescence on the measurement temperature, annealing temperature, and morphology of the FeSi2 phase revealed the dislocation nature of photoluminescence.  相似文献   

2.
The effect of high doses on p-and n-type silicon samples implanted with Fe+ ions under steady-state conditions (implantation energy, 100 keV; ion current density, 0.6–0.8 μA/cm2; irradiation dose, 1014–1016 ions/cm2) is investigated using Si L 2, 3 x-ray emission spectroscopy (the 3d3s → 2p electronic transition). An analysis of the Si L x-ray emission spectra of the silicon samples is performed by comparison with the spectra of reference materials and the spectra of silicon samples implanted with Fe+ ions in a pulsed mode. The Si L x-ray emission spectra are simulated by the molecular dynamics and full-potential linearized augmented-plane-wave (FLAPW) methods. It is revealed that the effect of high doses under steady-state conditions of Fe+ ion implantation into the semiconductor crystal matrix exhibits specific features: the disordering of the structure and partial amorphization of the sample from the surface deep into the bulk are more pronounced than those observed under conditions of pulsed ion implantation, although virtually no recrystallization of the sample at the threshold dose occurs. The most probable origins and mechanisms of the effect of high doses on the samples under investigation are discussed.  相似文献   

3.
ABSTRACT

In the present work, effects of silicon negative ion implantation into semi-insulating gallium arsenide (GaAs) samples with fluences varying between 1?×?1015 and 4?×?1017?ions?cm?2 at 100?keV have been described. Atomic force microscopic images obtained from samples implanted with fluence up to 1?×?1017?ion?cm?2 showed the formation of GaAs clusters on the surface of the sample. The shape, size and density of these clusters were found to depend on ion fluence. Whereas sample implanted at higher fluence of 4?×?1017?ions?cm?2 showed bump of arbitrary shapes due to cumulative effect of multiple silicon ion impact with GaAs on the same place. GXRD study revealed formation of silicon crystallites in the gallium arsenide sample after implantation. The silicon crystallite size estimated from the full width at half maxima of silicon (111) XRD peak using Debye-Scherrer formula was found to vary between 1.72 and 1.87?nm with respect to ion fluence. Hall measurement revealed the formation of n-type layer in gallium arsenide samples. The current–voltage measurement of the sample implanted with different fluences exhibited the diode like behavior.  相似文献   

4.
Processes of ionization of shallow acceptor centers (ACs) in silicon are studied. In crystalline silicon samples with phosphorus (1.6×1013, 2.7×1013, and 2.3×1015cm?3) and boron (1.3×1015cm?3) impurities, μAl impurity atoms were produced by implantation of negative muons. It is found that thermal ionization is the main mechanism for ionizing the Al acceptor impurity in both p-type and n-type silicon with an impurity concentration of ?1015cm?3 at T>45 K. The thermal ionization rate of Al ACs in Si varies from ~105 to ~106s?1 in the temperature range 45–55 K.  相似文献   

5.
Abstract

Ellipsometric parameters as a function of the dose (D = 2.1013 ? 2.1015 ions cm?2) and annealing temperature have been measured on the silicon implanted with 30 keV Te ions. Obtained information on lattice disorder are to a great extent comparable with those of other methods, e.g. backscattering technique. Moreover optical constants of a damage surface layer may be estimated.  相似文献   

6.
Weak magnetic fields with an induction B = 0.28 T are found to have an effect on the transformation of subsystems of structural (intrinsic and radiation-induced) silicon defects under irradiation with a low-intensity flux of beta particles (I = 105 cm?2 s?1). The effect of a weak magnetic field leads to an increase in fluences at which the disordering exhibits maxima.  相似文献   

7.
The results of experimental investigations of gallium arsenide single crystals with the orientations (100), (311)A, (211)A, (111)A, and (221)A are presented. The crystals were doped with silicon ions on the Iolla-3M setup (ion energy 75 keV, ion beam density 1 μA/cm2, implantation dose 1.2×103 cm−2) at room temperature and annealed on the Impul’s-5 setup at 950°C. Raman scattering and low-temperature photoluminescence methods established that the highest electrical activity of the implanted silicon under identical implantation and annealing conditions obtains for (100) and (311)A gallium arsenide. In the process n-type layers are produced. Zh. Tekh. Fiz. 69, 78–82 (May 1999) Deceased.  相似文献   

8.
Comparative analysis of the structural and optical properties of composite layers fabricated with the aid of implantation of single-crystalline silicon (c-Si) using Ge+ (40 keV/1 × 1017 ions/cm2) and Ag+ (30 keV/1.5 × 1017 ions/cm2) ions and sequential irradiation using Ge+ and Ag+ ions is presented. The implantation of the Ge+ ions leads to the formation of Ge: Si fine-grain amorphous surface layer with a thickness of 60 nm and a grain size of 20–40 nm. The implantation of c-Si using Ag+ ions results in the formation of submicron porous amorphous a-Si structure with a thickness of about 50 nm containing ion-synthesized Ag nanoparticles. The penetration of the Ag+ ions in the Ge: Si layer stimulates the formation of pores with Ag nanoparticles with more uniform size distribution. The reflection spectra of the implanted Ag: Si and Ag: GeSi layers exhibit a sharp decrease in the intensity in the UV (220–420 nm) spectral interval relative to the intensity of c-Si by more than 50% owing to the amorphization and structuring of surface. The formation of Ag nanoparticles in the implanted layers gives rise to a selective band of the plasmon resonance at a wavelength of about 820 nm in the optical spectra. Technological methods for fabrication of a composite based on GeSi with Ag nanoparticles are demonstrated in practice.  相似文献   

9.
A method is presented for avoiding the dislocation generation in (100) silicon implanted with phosphorus doses up to 5×1015 ions/cm2 at 50 keV. The residual defects after the damage anneal are considerably reduced if the phosphorus implant is combined with a low dose, e.g. 1×1014 ions/cm2, antimony implant which produces a deeper surface layer of amorphous silicon. It is essential that the phosphorus ions are implanted shallower than the antimony ions, and come to rest within the amorphous layer. Subsequent thermal annealing proceeds by a solid phase epitaxial regrowth mechanism.  相似文献   

10.
The optical-conductivity spectra of concentrated solutions Au1 ? x Fe x with x = 17 and 22 at % have been measured in a frequency range of (10–33) × 103 cm?1 at room temperature. The results are analyzed together with previous optical data obtained for compounds with x = 4–12 at %. It is found that the magnetic contributions σmagn = σAuFe ? σAu to dc and low-frequency(10 cm?1) conductivities for an Fe concentration below 4 at % are almost equal, while the low-frequency magnetic contribution for larger concentrations is significantly larger than the dc one. An absorption band at frequencies of 1000–3000 cm?1 has been found for samples with concentrations x = 6–22 at %. The observed phenomena are attributed to the localization of electrons inside clusters containing ferromagnetically ordered iron ions.  相似文献   

11.
The effect of oxygen on the dislocation-induced photoluminescence (DPL) spectra at 4.2 K is studied in silicon crystals with different impurity compositions subjected to plastic deformation at temperatures above 1000°C. A strong effect of doping impurities on the DPL spectra is observed for concentrations above 1016 cm?3. It is shown that the peculiarities of many DPL spectra in silicon can be explained by assuming that the D1 and D2 lines are associated with edge-type dislocation steps on glide dislocations.  相似文献   

12.
The structure and infrared absorption of cubic silicon carbide (β-SiC) layers produced by the continuous high-dose implantation of carbon ions (C+) into silicon (E=40 keV and D=5×1017 cm−2), followed by the processing of the implanted layers with a high-power nanosecond pulsed ion beam (C+, τ=50 ns, E=300 keV, and W=1.0–1.5 J/cm2), are investigated. Transmission electron microscopy and electron diffraction data indicate the formation of a coarse-grained polycrystalline β-SiC layer with grain sizes of up to 100 nm. A characteristic feature of such a layer is the dendritic surface morphology, which is explained by crystallization from the melt supercooled well below the melting point of β-SiC.  相似文献   

13.
秦希峰  陈明  王雪林  梁毅  张少梅 《中国物理 B》2010,19(11):113501-113501
The erbium ions at energy of 400 keV and dose of 5×10 15 ions/cm 2 were implanted into silicon single crystals at room temperature at the angles of 0,45 and 60.The lateral spread of 400 keV erbium ions implanted in silicon sample was measured by the Rutherford backscattering technique.The results show that the measured values were in good agreement with those obtained from the prediction of TRIM’98 (Transport of Ions in Matter) and SRIM2006 (Stopping and Range of Ions in Matter) codes.  相似文献   

14.
It is shown that (Ga,Mn)As layers formed by Mn+ ion implantation into GaAs and subsequent annealing by an excimer laser pulse with an energy density to 200–300 mJ/cm2 feature the properties of the p-type semiconductor and ferromagnetic properties. The threshold dose of implanted ions (~1015 cm–2) for activating Mn acceptors is determined. The sheet hole concentration and the Curie temperature increase with further increasing Mn+ ion dose. Hysteresis loops in the magnetic field dependences of the Hall effect, the negative magnetoresistance, and magnetic and structural studies suggest that the layers are analogues of single-phase ferromagnetic compounds (Ga,Mn)As formed by low-temperature molecular beam epitaxy.  相似文献   

15.
Silicon wafers were implanted with 40 keV B+ ions (to doses of 1.2×1014 or 1.2×1015 cm–2) and 50 or 100 keV N+ ions (to doses from 1.2×1014 to 1.2×1015 cm–2). After implantations, the samples were furnace annealed at temperatures from 100 to 450 °C. The depth profiles of the radiation damages before and after annealing were obtained from random and channeled RBS spectra using standard procedures. Two damaged regions with different annealing behaviour were found for the silicon implanted with boron ions. Present investigations show that surface disordered layer conserves at the annealing temperatures up to 450 °C. The influence of preliminary boron implantation on the concentration of radiation defects created in subsequent nitrogen implantation was studied. It was shown that the annealing behaviour of the dual implanted silicon layers depends on the nitrogen implantation dose.The authors would like to thank the members of the INP accelerator staff for the help during the experiments. The work of two authors (V.H. and J.K.) was partially supported by the Internal Grant Agency of Academy of Science of Czech Republic under grant No. 14805.  相似文献   

16.
Hall effect and sheet resistivity measurements have been performed on boron implantations in 1μm silicon layers on sapphire (SOS), and in bulk silicon. The doses used were 1014, 1015 and 1016 ions/cm2, and implantation energies were 150 and 300 keV. The samples were annealed at temperatures between 300 and 800°C. As a rule the effective number of carriers in SOS was found to be about twice the number of carriers in bulk silicon. However, the mobility is lower in bulk silicon, resulting in a sheet resistivity almost the same in boron implanted SOS and bulk silicon.  相似文献   

17.
DC-induced generation of the reflected second harmonic is experimentally observed on the surface of a centrosymmetric silicon single crystal. A direct current with a surface density of j max ~ 103 A/cm2 violates the symmetry of the electron distribution function and induces the optical second harmonic with an intensity corresponding to the dipole quadratic susceptibility χ(2)d (j max) ~ 3 × 10?15 m/V.  相似文献   

18.
The depth distribution profiles of sodium atoms in silicon upon high-voltage implantation (ion energy, 300 keV; implantation dose, 5 × 1014 and 3 × 1015 cm ?2) are investigated before and after annealing at temperatures in the range T ann = 300–900°C (t ann = 30 min). Ion implantation is performed with the use of a high-resistivity p-Si (ρ= 3–5 kΩ cm) grown by floating-zone melting. After implantation, the depth distribution profiles are characterized by an intense tail attributed to the incorporation of sodium atoms into channels upon their scattering from displaced silicon atoms. At an implantation dose of 3 × 1015 ions/cm2, which is higher than the amorphization threshold of silicon, a segregation peak is observed on the left slope of the diffusion profile in the vicinity of the maximum after annealing at a temperature T ann = 600°C. At an implantation dose of 5 × 1014 ions/cm2, which is insufficient for silicon amorphization, no similar peak is observed. Annealing at a temperature T ann = 700°C leads to a shift of the profile toward the surface of the sample. Annealing performed at temperatures T ann ≥ 800°C results in a considerable loss of sodium atoms due to their diffusion toward the surface of the sample and subsequent evaporation. After annealing, only a small number of implanted atoms that are located far from the region of the most severe damages remain electrically active. It is demonstrated that, owing to the larger distance between the diffusion source and the surface of the sample, the superficial density of electrically active atoms in the diffusion layer upon high-voltage implantation of sodium ions is almost one order of magnitude higher than the corresponding density observed upon low-voltage implantation (50–70 keV). In this case, the volume concentration of donors near the surface of the sample increases by a factor of 5–10. The measured values of the effective diffusion parameters of sodium at annealing temperatures in the range T ann = 525–900°C are as follows: D 0 = 0.018 cm2/s and E a = 1.29 eV/kT. These parameters are almost identical to those previously obtained in the case of low-voltage implantation.  相似文献   

19.
The effect of pulsed ion-beam annealing on the surface morphology, structure, and composition of single-crystal Si(111) wafers implanted by chromium ions with a dose varying from 6 × 1015 to 6 × 1016 cm−2 and on subsequent growth of silicon is investigated for the first time. It is found that pulsed ion-beam annealing causes chromium atom redistribution in the surface layer of the silicon and precipitation of the polycrystalline chromium disilicide (CrSi2) phase. It is shown that the ultrahigh-vacuum cleaning of the silicon wafers at 850°C upon implantation and pulsed ion-beam annealing provides an atomically clean surface with a developed relief. The growth of silicon by molecular beam epitaxy generates oriented 3D silicon islands, which coalesce at a layer thickness of 100 nm and an implantation dose of 1016 cm−2. At higher implantation doses, the silicon layer grows polycrystalline. As follows from Raman scattering data and optical reflectance spectroscopy data, semiconducting CrSi2 precipitates arise inside the silicon substrate, which diffuse toward its surface during growth.  相似文献   

20.
Reordering of 〈111〉 silicon, implanted with Pb ions at energies >100 keV and fluences ~5 × 1015 cm?2 is accompanied by substantial impurity indiffusion in addition to pronounced outdiffusion and accumulation at the near surface region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号