首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Proton magnetic resonance spectra at 100 MHz are described for some zinc complexes of the E- and Z-isomers of pyridine-2-carbaldehyde 2′-pyridylhydrazone in d6-dimethylsulphoxide solution. Chemical shift data are discussed qualitatively in relation to factors such as the charge on the metal ion, the anisotropy of ligand nitrogen atoms, electric field effects caused by the dipole moment of nitrogen lone pairs, metal-nonbonded-hydrogen interactions, ring current effects and the conformational changes undergone by each isomer on coordination.  相似文献   

2.
The equilibrium concentrations of E- and Z-isomers of thiazolidin-4-ones containing exocyclic double bonds in positions 2 and 5 of the cycle were determined in DMSO-d6. The influence of the nature of the substituents on the equilibrium position was found. Electron-releasing substituents stabilize the E,Z-configuration and electron-withdrawing substituents stabilize the Z,Z-configuration. The association constants of E- and Z-2-ethoxycarbonylmethylenethiazolidin-4-ones with the sodium cation were determined by 1H NMR spectroscopy.  相似文献   

3.
( all-E)-12′-Apozeanthinol, Persicaxanthine, and Persicachromes Reexamination of the so-called ‘persicaxanthins’ and ‘persicachromes’, the fluorescent and polar C25-apocarotenols from the flesh of cling peaches, led to the identification of the following components: (3R)-12′-apo-β-carotene-3,12′-diol ( 3 ), (3S,5R,8R, all-E)- and (3S,5R,8S,all-E)-5,8-epoxy-5,8-dihydro-12′-apo-β-carotene-3,12′-diols (4 and 5, resp.), (3S,5R,6S,all-E)-5,6-epoxy-5,6-dihydro-l2′-apo-β-carotene-3,12′-diol =persicaxanthin; ( 6 ), (3S,5R,6S,9Z,13′Z)-5,6-dihydro-12′apo-β-carotene-3,12′-diol ( 7 ; probable structure), (3S,5R,6S,15Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 8 ), and (3S,5R,6S,13Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 9 ). The (Z)-isomers 7 – 9 are very labile and, after HPLC separation, isomerized predominantly to the (all-E)-isomer 6 .  相似文献   

4.
Vinylogous β-Cleavage of Enones: UV.-irradiation of 4-(3′,7′,7′-trimethyl-2′-oxabicyclo[3.2.0]hept-3′-ene-1′-yl)but-3-ene-2-on On 1π,π*-excitation (λ = 254 nm) in acetonitrile (E/Z)- 2 is converted into the isomers 4–9 and undergoes fragmentation yielding 10 ; in methanol (E/Z)- 2 gives 7–10 and is transformed into 11 by incorporation of the solvent. On 1π,π*-excitation (λ λ?347 nm; benzene-d6) (E)- 2 is isomerized into (Z)- 2 , which is converted into the isomers 3 and 4 by further irradiation. 1π,π*-Excitation (λ = 254 nm; acetonitrile) of 4 gives 6 and (E)- 9 , whereas UV.-irradiation (λ = 254 nm; acetonitrile-d3) of 5 yields (E)- 7 and 8 . On 1π,π*-excitation (λ = 254 nm; acetonitrile) of (E/Z)- 12 the compounds (E)- 14 and (E)- 15 are obtained.  相似文献   

5.
Nucleosides and Nucleotide. Part 15. Synthesis of Deoxyribonucleoside Monophosphates and Triphosphates with 2(1H)-Pyrimidinone, 2(1H)-Pyridinone and 4-Amino-2(1H)-pyridinone as the Bases The phosphorylation of the modified nucleosides 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone (Md, 4 ), 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone (Zd, 6 ) and the synthesis of 1–2′-deoxy-β-D -ribofuranosyl-2(1 H)-pyrimidinone-5′-O-triphosphate (pppMd, 1 ), 1-(2′-deoxy-β-D ribofuranosyl)-2(1 H)-pyridinone-5′-O-triphosphate (pppIId, 2 ), and 4-amino-1-(2′-deoxy-βD -ribofuranosyl)-2(1 H)-pyridinone-5′-O-triphosphate (pppZd, 3 ) are described. The nucleoside-5′-monophosphates pMd (5) and pZd (7) were obtained by selective phosphorylation of Md (4) and Zd (6) , respectively, using phosphorylchloride in triethyl phosphate or in acetonitril. The reaction of pMd (5) pII d (8) or pZd (7) with morpholine in the presence of DCC led to the phosphoric amides 9, 10 and 11 , respectively, which were converted with tributylammonium pyrophosphate in dried dimethylsulfoxide to the nucleoside-5′triphosphates 1, 2 and 3 , respectively.  相似文献   

6.
Some new (Z)-ethyl 3-amino-3-aryl-2-cyanopropenoates have been prepared in good yields by reacting (E)- and (Z)-ethyl 3-aryl-3-chloro-2-cyanopropenoates with primary and secondary amines. The (Z)-isomers were exclusively formed.although the starting material consisted of a mixture of (E)- and (Z)-isomers (≈ 1:1)  相似文献   

7.
New Approaches to Some Aromatic Retinoids Starting from 2,3,5-trimethylphenol ( 2 ), two pathways to ethyl (all-E)-9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethylnona-2,4,6,8-tetraenoate ( 1 ) and to some of its (Z)-isomers have been developed. The first one is based on a Pd(O)-catalyzed arylation of (Z)-3-methylpent-2-en-4-yn-l-ol ( 6 ) with 4-bromo-2,3,5-trimethylanisol ( 5 ). The acetylenic C15?alcohol 9 was transformed into the corresponding acetylenic phosphonium salt 10 , which was catalytically hydrogenated to the olefinic Wittig salt. Wittig olefination led, then, to the (6Z, 8Z)- and (4Z, 6Z, 8Z)-isomers, 7 and 8 , respectively. In a second approach, Friedel-Crafts reaction of 3-methylpent-l-en-4-yn-3-ol with the 2,3,5-trimethylanisol gave a C15-intermediate with a terminal C?C bond in the side chain. After deprotonation and reaction with a C5 aldehyd, the corresponding C20-intermediate could be isolated in high yield. Finally, further conversion led predominantly to the (all-E)-retinoid, accompanied by its (9Z)- and (13Z)-isomers.  相似文献   

8.
1-R-5-[(2-Nitro-2-phenyl)ethenyl]imidazoles (R = Bn, Me, H) 6a,b,c were synthesized by the Knoevenagel reaction of the corresponding aldehydes 4a,b,c with phenylnitromethane 5 . The E-isomers 6a,b,c were precipitated from the reaction mixture as crystalline compounds in 89, 81 and 60% yields, respectively. Traces of the Z-isomers 6a′b′,c′ were found in the reaction mixtures but could be obtained in a ratio of 4:3 from the E-form with UV irradiation. The E-forms were more stable and the Z-isomers changed again to the E-isomers in several weeks.  相似文献   

9.
Deprotonation of ethyl (E)-2-alkenoates 1 , 3 and 4 yields after protonation the double bond migrated (3 Z)-isomers 5 , 7 and 9 as major products. In contrast, deprotonation and reprotonation of ethyl (Z)-2-pentenoate ( 2 ) gives the (3 E)-isomer 6 exclusively. These findings are explained by reaction paths starting from different ester conformations.  相似文献   

10.
2-(1-Alkoxyimino-2,2,2-trifluoroethyl)-5-trimethylsilylfurans were synthesized by the condensation of 2-(trifluoroacetyl)-5-trimethylsilylfuran with alkoxyamines. According to 1H and 19F NMR spectroscopic data, the alkoxyimino group in the E-isomers descreens the H-3 and H-4 protons of the furan ring more strongly than in the Z-isomers, shifting their signals downfield. The fluorine atoms of the α-trifluoromethyl group in the Z-isomer are characterized by a downfield shift in relation to the E-isomer. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 834–838, June, 2005.  相似文献   

11.
Dibromoethane chemical ionization mass spectra of ten pairs of methyl (E)- and (Z)-cinnamates were studied. C2H4Br+ ion forms stable adducts with E-isomers and the adducts of Z-isomers show preferential loss of methanol. The observed results suggest that the probability of ring alkylation is greater than with the carbonyl group.  相似文献   

12.
The 1H-NMR spectra of 2-(nitromethylidene)pyrrolidine ( 7 ), 1-methyl-2-(nitromethylidene)imidazolidind ( 10 ) and 3-(nitromethylidene)tetrahydrothiazine ( 11 ) in CDCl3 and (CD3)2SO indicate that these compounds have the intramolecularly H-bonded structures (Z)- 7 , (E)- 10 and (Z)- 11 while the N-methyl derivative 8 of 7 is (E)-configurated in both solvents. 1-Benzylamino-1-(methyltio)-2-nitroehtylene ( 13 ), an acylic model, has the H-bonded configuration (E)- 13 in CDCl3 and in (CD3)2SO. 2-(Nitromethylidene)thiazolidine ( 3 ) has the (E)-configuration in CDCl3 but exists in (CD3)2SO as a mixture of (Z)- and (E)-isomers with the former predominating. Both species are detected to varying proportions in a mixture of the two solvents. 15N-NMR spectroscopy of 3 ruled out unambiguously the nitronic acid structure 6 and the nitromethyleimine structure 5 . The N-methyl derivative 4 of 3 is (Z)-configurated in (CD3)2SO. Comparison of the olefinic proton shifts of (Z)- 3 and (Z)- 4 with those of analogues and also of 1,1-bis(methylti)-2-nitroethylene ( 12 ) shows decreased conjugation of the lone pair of electrons of the ring N-atom in (Z)- 3 and (Z)- 4 . This is also supported by 13C-NMR studies. Plausible explanations for the phenomenon are offered by postulating that the ring N-atoms are pyramidal in (Z)- 3 and (Z)- 4 and planar in other cases or, alternatively, that the conjugated nitroenamine system gets twisted due to steric interaction between the NO2-group and the ring S-atom. Single-crystal X-ray studies of 3 and 8 show that the former exists in the (Z)-configuration and the latter in (E)-configuration; the ring N-atom in the former has slightly more pyramidal character than in the latter.  相似文献   

13.
《Tetrahedron: Asymmetry》2007,18(7):838-846
The male-produced aggregation pheromone of the stink bug Erysarcoris lewisi Distant was shown to be one of the two diastereomers of (2Z,6R)-2-methyl-6-(4′-methylenebicyclo[3.1.0]hexyl)hept-2-en-1-ol by synthesizing and bioassaying (2E,6R)-, (2E,6S)-, (2Z,6R)-, and (2Z,6S)-isomers. These were synthesized from the enantiomers of citronellal by employing an intramolecular α-ketocarbene addition to a double bond and the E-selective or Z-selective olefination of a formyl group as the key steps. A reliable method was developed for the preparation of ethyl 2-(di-o-tolylphosphono)propanoate, Ando’s reagent for Z-selective olefination.  相似文献   

14.
Rose bengal-sensitized photooxygenation of 4-propyl-4-octene ( 1 ) in MeOH/Me2CHOH 1:1 (v/v) and MeOH/H2O 95:5 followed by reduction gave (E)-4-propyl-5-octen-4-ol ( 4 ), its (Z)-isomer 5 , (E)-5-propyl-5-octen-4-ol ( 6 ), and its (Z)-isomer 7 . Analogously, (E)-4-propyl[1,1,1-2H3]oct-4-ene ( 2 ) gave (E)-4-propyl[1,1,1-2H3]oct-5-en-4-ol ( 14 ), its (Z)-isomer 15 , (E)-5-[3′,3′,3′-2H3]propyl-5-octen-4-ol ( 16 ), its (Z)-isomer 17 , and the corresponding [8,8,8-2H3]-isomers 18 and 19 (see Scheme 1). The proportions of 4–7 were carefully determined by GC between 10% and 85% conversion of 1 and were constant within this range. The labeled substrate 2 was photooxygenated in two high-conversion experiments, and after reduction, the ratios 16/18 and 17/19 were determined by NMR. Isotope effects in 2 were neglected and the proportions of corresponding products from 1 and 2 assumed to be similar (% 4 ≈? % 14 ; % 5 ≈? % 15 ; % 6 ≈? % ( 16 + 18 ): % 7 ≈? % ( 17 + 19 )). Combination of these proportions with the ratios 16/18 and 17/19 led to an estimate of the proportions of hydroperoxides formed from 2 . Accordingly, singlet oxygen ene additions at the disubstituted side of 2 are preferred (ca. 90%). The previously studied trisubstituted olefins 20–25 exhibited the same preference, but had both CH3 and higher alkyl substituents on the double bond. In these substrates, CH3 groups syn to the lone alkyl or CH3 group appear to be more reactive than CH2 groups at that site beyond a statistical bias.  相似文献   

15.
The tetramethylsilane (TMS) chemical ionization (CI) mass spectra of some geometrical isomers of unsaturated dicarboxylic acids, esters and isomeric phthalic acids reveal explicit differences. The (E)-acids show an abundant [M + 73 ? CH4]+Ion whereas the (Z)-acids exhibit a strong [M + 73 ? H2O]+ ion in their TMS CI spectra. The loss of CH4 from the adduct of fumaric acid has been confirmed by the study of fumaric acid-d2 and B/E linked scan studies. In the case of esters, the TMS CI spectra of (E)-isomers contain abundant [M + 73]+ adduct ions, whereas these are weakly abundant in the TMS CI of the (Z)-isomers.  相似文献   

16.
8,19-Dimethyl-tetraepoxy[22]annulen(2.1.2.1): The First Tetraepoxy-Bridged Aromatic[22]Annulene By McMurry reaction of 5,5′-ethylidenebis[furan-2-carbaldehyde] ( 15 ), a syn/anti mixture 16 of (E,E)- and (Z,Z)-8,19-dihydro-8,19-dimethyl-tetraepoxy[22]annulene is obtained. The (E/E)-isomers 16 are the first rotation- ally active noncyclic conjugated macrocycles, where the (E)-ethenediyl moieties rotate around the connecting single bonds. The dihydro-tetraepoxy[22]annulenes 16 are dehydrogenated by (Ph3C)BF4 as well as by O2 to give the tetraepoxy[22]annulene 11 . The spectroscopic data support the character of 11 as an aromatic, diatropic ring system, which is rather sensitive towards O2. In the oxidation mixture obtained from 11 , beside polymeric products, two compounds 19 and 20 can be isolated, carrying one and two CHO groups, respectively, resulting by oxidation of one or both Me-groups but having retained the aromatic 22π system of 11 .  相似文献   

17.
Triphenylphosphine catalyzes the regio- and stereospecific addition of ketoximes to acylacetylenes, whereas classical conditions using acetylene (KOH/DMSO, 70 °C) are unsuitable for this purpose. The reaction proceeds under mild conditions (CH2Cl2, rt, 7 h) to afford (E)-(O)-2-(acyl)vinylketoximes (92-98% stereoselectivity) in a yield of up to 85%. The (E)-adducts obtained are energetically less favorable than the corresponding (Z)-isomers and are gradually enriched with (Z)-isomers, thus indicating the kinetic control of (E)-stereoselectivity of the reaction.  相似文献   

18.
Synthesis of Enantiomerically Pure Mimulaxanthin and of Its (9Z,9′Z)- and (15Z)Isomers We present the details of a synthesis of optically active, enantiomerically pure stereoisomers of mimulaxanthin (=(3s,5R,6R,3′S,5′R,6′R)-6,7,6′,7′-tetradehydro-5,6,5′,6′-tetrahydro-β,β-carotin-3,5,3′,5′-tetrol) either as free alcohols 1a and 24a or as their crystalline (t-Bu)Me2Si ethers 1b and 24b . Grasshopper ketone 2a , a presumed synthon, unexpectedly showed a very sluggish reaction with Wittig-Horner reagents. Upon heating with the ylide of ester phosphonates, an addition across the allenic bond occurred. On the contrary, a slow but normal 1,2-addition took place with the ylide from (cyanomethyl)phosphonate but, unexpectedly, with concomitant inversion at the chiral axis. So a mixture of(6R,6S,9E,9Z)-isomers 6 – 9 was produced {(Scheme 1). However, a fast and very clean 1,2-addition occurred with the ethynyl ketone 12 to yield the esters 13 and 14 (Scheme 2). DIBAH reduction of the separated stereoisomers gave the allenic alcohols 15 and 16 in high yield. Mild oxidation to the aldehydes 17 and 18 followed by their condensation with the acetylenic C10-bis-ylide 19 led to the stereoisomeric 15,15′-didehydromimulaxanthins 20 and 22 , respectively (Schemes 3 and 4). Mimulaxanthins 1 and 24 were prepared by partial hydrogenation of 20 and 22 followed by a thermal (Z/E)-isomerization. As expected, the mimulaxanthins exhibit very weak CD curves, obviously caused by the allenic bond that insulates the chiral centers in the end group from the chromophor. On the contrary, some of the C15-allenic synthons showed not only fairly strong CD effects but also a split CD curve which, in our interpretation, results from an exciton coupling between the allene and the C(9)?C(10) bond. We postulate a rotation around the C(8)? C(9) bond, presumably caused by an intramolecular H-bond in 16 or by a dipol interaction between the polarized double bonds in 6 , 7 , 8 , and 17 .  相似文献   

19.
Aromatic Sigmatropic Hydrogen-Shifts in 2-Vinyl- and 2-Allyl-phenols It is shown by deuterium labeling experiments that 2-vinylphenols, on heating at 142,5°, undergo aromatic [1,5]-H-shifts whereby o-quinone methides are formed as intermediates (Scheme 7). Thus, heating of 2-isopropenylphenol ( 6 ) in a D2O/dioxane mixture leads to a rapid deuterium incorporation into the methylidene group of the isopropenyl moiety (Table 1) whereas its methyl group shows only a slow uptake of deuterium. The latter exchange process can be attributed to intermolecular reactions (Scheme 8). The quinone methide intermediates (e.g. 26 , Scheme 8) can be regarded as vinyl homologues of alkyl ketones. Therefore, 26 can exchange hydrogen in both methyl groups by an acid- and base-catalysed mechanism. Indeed, when 6 is heated in D2O/pyridine or D2O/CH3COOD/dioxane, an almost statistical incorporation of deuterium into the methylidene and the methyl group of the isopropenyl moiety is observed (Table 3). As a consequence of thermally induced [1,5]-H-shifts, 2-(1′-propenyl)-phenols undergo rapid (E,Z) isomerization with first order kinetics on heating above 140° in decane solution. Activation parameters are given in Table 4. The observed primary +++++ H/D isotope effect of 3.3 in the (E,Z) isomerization of phenol 8 is in +++ment with intramolecular H/D-shifts in the rate determing step (Scheme 9 +++ Table 5). As expected aromatic sigmatropic [1,5]-H-shifts in 2-(1′-propenyl)-+++ are much faster than aromatic homosigmatropic [1,5]-H-shifts in 2-(2′-+++++)phenols (Scheme 1 and Table 6). The structurally comparable phenols +++ (Z)- 10 and (E)/(Z)- 14 (Scheme 3) show k([1,5])/k(homo-[1,5]) ≈ 2300 at ++++
  • 1 A more detailed discussion in English is given in [1].
  • .  相似文献   

    20.
    Reaction of 2(3,4)-pyridinecarboxaldehydes (5) with ethylidenetriphenylphosphorane afford a mixture of stereoisomers Z-( 6 ) and E-1-[2(3,4)-pyridinyl]-1-propenes ( 7 ). m-Chloroperbenzoic acid oxidation of 6 and 7 yields a 60:40 mixture of Z-( 8 ) and E-1-[1-oxido-2(3,4)-pyridinyl]-2-methyloxiranes ( 9 ). The regiospecific reaction of Z-isomers 8a-c with cyclic amines as piperidine give rise to threo-1-hydroxy-1-[1-oxido-2(3,4)-pyridinyl]-2-(1-piperidino)propanes ( 10 ) while the E-isomer 9a yields erythro- 11 . On tho other hand, the E-isomers 9b and 9c having 1-oxido-3(4)-pyridinyl substituents afford erythro- 12 resulting from attack by piperidine at C-1 of the oxirane. Reductive deoxygenation using 10% palladium on charcoal and hydrogen gas effectively removed the N-oxide substituent from the threo- 10 and erythro- 11 β-aminoalcohols. Dilute solution ir spectroscopy indicated the existance of strong intramolecular hydrogen bonding in the β-aminoalcohols 10 and 11 . The assignment of relative configuration of diastereoisomers 10 and 11 was based on the magnitude of the vicinal coupling constant J where J threo is greater than J erythro.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号