首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and reactions of the valence polaromeric compound (4,4-dimethyl-2-thiazoline-5-dimethyliminium)-2-thiolate ? 1-dimethylthiocarbamoyl-1-methyl-ethyl isothiocyanate from 3-dimethylamino-2,2-dimethyl-2H-azirine and carbon disulfide. 3-Dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) reacts with carbon disulfide to give crystals which have the dipolar structure 3a [(4,4-dimethyl-2-thiazoline-5-dimethyliminium)-2-thiolate, Scheme 1]. In solution, the non-dipolar (charge-free) isomeric form 3b (1-Dimethyl-thiocarbamoyl-1-methyl-ethyl isothiocyanate) is almost exclusively populated. Reaction products are derived from both forms: Derivatives of 3a are the hydrolysis product 6 , the sodium borohydride reduction product 7 and the methylation products 9 and 10 , respectively (Scheme 2). The isothiocyanate form 3b is responsible for the various reaction products with amines (Scheme 3). One of the reaction products with ammonia, namely 20 , is also obtained by the reaction of 1 with thiocyanic acid. Thermolysis of the azirine/carbon disulfide adduct 3 leads to 2-dimethylamino-4,4-dimethyl-2-thiazoline-5-thione ( 17 ) in high yield. A possible mechanism is outlined in Scheme 4. The same compound is also formed by rearrangement of 3 under the catalytic influence of dimethylamine. Its structure has been established by X-ray crystallography (section 4). Again a rearrangement is involved in the reductive (NaBH4) conversion of 17 to 7 , the direct reduction product of the dipolar species 3a (Scheme 5). The isothiocyanate form 3b is able to react with a second molecule of 3-dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) to yield compound 25 , which in the crystalline or dissolved state appears to be almost entirely populated by the carbodiimide form with structure 25b (Scheme 7), though all reaction products of 25 (reduction with sodium borohydride, addition of water or hydrogen sulfide, Schemes 7 and 8) are derived from the dipolar form 25a , not detectable as such; here again therefore there is a dynamic equilibrium 25a ? 25b . The two forms of adduct 3 , namely 3a and 3b , are obviously very easily interconverted at room temperature and therefore can be considered as valence polaromeric forms (section 5). A classification of the dipolar (zwitterionic) form is given, which allows a comparison of various dipolar species and gives as indication of charge stabilization by delocalization. The versatile reactivity of the 3-dimethylamino-2,2-dimethyl-2H-azirine/carbon disulfide adduct is demonstrated by the fact that with simple reagents approximately 25 derivatives have been obtained, most of them being new heterocyclic compounds.  相似文献   

2.
Reaction of 3-Dimethylamino-2,2-dimethyl-2H-azirine with 6-Methyluracil; Crystal Structure of the Products The reaction of 3-dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) with 6-methyl-uracil ( 4 ) in 2-propanol at 80° yields the 4H-imidazoje derivative 5 as the main product. This reaction is similar to the previously reported ones with heterocyclic compounds containing the sequence NH? CO? NH? CO. In the presence of water, 5 is easily hydrolyzed to 6 . The structures of 5 and 6 have been established by X-ray crystallography.  相似文献   

3.
Reaction of 3-Dimethylamino-2,2-dimethyl-2H-azirine with Phenyl Isothiocyanate In contrast to the reactions of 3-dimethylamino-2,2-dimethyl-2H-azirine ( 1a ) with various isothiocyanates, leading to thiazoline derivatives, the reaction of 1a with phenyl isothiocyanate at room temperature gives 5,5-dimethyl-3-phenyl-Δ1-imidazolin-4-dimethyliminium-2-thiolate ( 9 , Scheme 2). The structure of 9 is deduced from spectral data and reactions of this zwitterionic compound (Schemes 2 and 4).  相似文献   

4.
Synthesis and Reactions of 8-membered Heterocycles from 3-Dimethylamino-2,2-dimethyl-2H-azirine and Saccharin or Phthalimide 3-Dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) reacts at 0-20° with the NH-acidic compounds saccharin ( 2 ) and phthalimide ( 8 ) to give the 8-membered heterocycles 3-dimethylamino-4,4-dimethyl-5,6-dihydro-4 H-1,2,5-benzothiadiazocin-6-one-1,1-dioxide ( 3a ) and 4-dimethylamino-3,3-dimethyl-1,2,3,6-tetrahydro-2,5-benzodiazocin-1,6-dione ( 9 ), respectively. The structure of 3a has been established by X-ray (chap. 2). A possible mechanism for the formation of 3a and 9 is given in Schemes 1 and 4. Reduction of 3a with sodium borohydride yields the 2-sulfamoylbenzamide derivative 4 (Scheme 2); in methanolic solution 3a undergoes a rearrangement to give the methyl 2-sulfamoyl-benzoate 5 . The mechanism for this reaction as suggested in Scheme 2 involves a ring contraction/ring opening sequence. Again a ring contraction is postulated to explain the formation of the 4H-imidazole derivative 7 during thermolysis of 3a at 180° (Scheme 3). The 2,5-benzodiazocine derivative 9 rearranges in alcoholic solvents to 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl) benzoates ( 10 , 11 ), in water to the corresponding benzoic acid 12 , and in alcoholic solutions containing dimethylamine or pyrrolidine to the benzamides 13 and 14 , respectively (Scheme 5). The reaction with amines takes place only in very polar solvents like alcohols or formamide, but not in acetonitrile. Possible mechanisms of these rearrangements are given in Scheme 5. Sodium borohydride reduction of 9 in 2-propanol yields 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl)benzyl alcohol ( 15 , Scheme 6) which is easily converted to the O-acetate 16 . Hydrolysis of 15 with 3N HCl at 50° leads to an imidazolinone derivative 17a or 17b , whereas hydrolysis with 1N NaOH yields a mixture of phthalide ( 18 ) and 2-hydroxymethyl-benzoic acid ( 19 , Scheme 6). The zwitterionic compound 20 (Scheme 7) results from the hydrolysis of the phthalimide-adduct 9 or the esters 11 and 12 . Interestingly, compound 9 is thermally converted to the amide 13 and N-(1′-carbamoyl-1′-methylethyl)phthalimide ( 21 , Scheme 7) whose structure has been established by an independent synthesis starting with phthalic anhydride and 2-amino-isobutyric acid. However, the reaction mechanism is not clear at this stage.  相似文献   

5.
Structure of the adduct from 3-dimethylamino-2,2-dimethyl-2H-azirine and 3-methyl-2,4-diphenyl-1,3-oxazolium-5-olate 3-Dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) reacts with 3-methyl-2,4-diphenyl-1,3-oxazolium-5-olate ( 5a ) to give a 1:1 adduct ( 7 ) in a 88% yield. Its crystal structure has been determined by X-ray analysis (direct methods) and refined with 1056 structure amplitudes to R = 0,032. The crystal system is monoclinic, space group P21/c, with unit cell dimensions a = 10.663, b = 9,828, c = 18,592 Å, and β = 90,63°. It is obvious that 4-dimethylamino-5,5-dimethyl-2-[α-(N-methyl-benzamido)benzyliden]-Δ3-1,3-oxazoline ( 7 ) arises from an addition of 1 to the valence-polaromeric ketene form 5b of the mesoionic oxazolone 5a (Scheme 3).  相似文献   

6.
Cyclols as Intermediates in the Reaction of 3-(Dimethylamino)-2,2-dimethyl-2H-azirine with Monosubstituted Parabanic Acids; a New and Unexpected Rearrangement The reaction of 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) with N-methylparabanic acid ( 4 ) in 2-propanol at room temperature gives the cyclol 5 in 97% yield. In acetonitrile solution 5 rearranges to the imidazoline derivative 6 (Scheme 2). The structures of the unexpected products 5 and 6 have been established by X-ray crystallography.  相似文献   

7.
Reactions of 3-Dimethylamino-2,2-dimethyl-2H-azirine with NH-Acidic Heterocycles; Synthesis of 4H-Imidazoles In this paper, reactions of 3-dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) with heterocyclic compounds containing the structure unit CO? NH? CO? NH are described. 5,5-Diethylbarbituric acid ( 5 ) reacts with 1 in refluxing 2-propanol to give the 4H-imidazole derivative 6 (Scheme 2) in 80% yield. The structure of 6 has been established by X-ray crystallography. Under similar conditions 1 and isopropyl uracil-6-carboxylate ( 7 ) yield the 4H-imidazole 8 (Scheme 3), the structure of which is deduced from spectral data and the degradation reactions shown in Scheme 3. Hydrolysis of 8 with 3N HCl at room temperature leads to the α-ketoester derivative 9 , which in refluxing methanol gives dimethyl oxalate and 5-dimethyl-amino-2,4,4-trimethyl-4H-imidazole ( 10 ). On hydrolysis the latter is converted to the known 2,4,4-trimethyl-2-imidazolin-5-one ( 11 ) [6]. Quinazolin-2,4 (1H, 3H)-dione ( 12 ) and imidazolidinetrione (parabanic acid, 14 ) undergo with 1 a similar reaction to give the 4H-imidazoles 13 and 15 , respectively (Schemes 4 and 5). In Scheme 6 two possible mechanisms for the formation of 4H-imidazoles from 1 and heterocycles of type 16 are formulated. The zwitterionic intermediate f corresponds to b in Scheme 1. Instead of dehydration as in the case of the reaction of 1 with phthalohydrazide [3], or ring expansion as with saccharin and cyclic imides [1] [2], f , undergoes ring opening (way A or B). Decarboxylation then leads to the 4H-imidazoles 17 .  相似文献   

8.
Reaction of 3-Dimethylamino-2,2-dimethyl-2H-azirine with Barbituric Acid The reaction of 3-dimethylamino-2,2-dimethyl-2H-azirine (1) with barbituric acid (4) in dimethyl formamide at room temperature yields a mixture of several compounds. The two main products 5 and 6 have been isolated in 40 and 10% yield, respectively, and their structures established by X-ray analysis. In Schemes 4–6 reaction mechanisms for the formation of 5 and 6 are postulated, the first step beeing either a C- or an N-alkylation of barbituric acid. Reduction of 5 and 6 with NaBH4 in ethanol at room temperature yields 6,6-dimethyl-1,5,6,7-tetrahydro-pyrrolo[2,3-d]pyrimidin-2,4(3H)-dione (7) and 3,3-dimethyl-2,3-dihydro-imidazo[1,2-c]pyrimidin-5,7(1H, 6H)-dione (8) in 38 and 48% yield, respectively. Treatment of 6 with 3N aqueous NaOH at room temperature gives 3,3-dimethyl-imidazo[1,2-c]pyrimidin-2,5,7 (1H, 3H, 6H)-trione (9) in 51% yield (Scheme 3).  相似文献   

9.
Irradiation of 2-methyl- ( 1c ) and 2,2-dimethyl-3-phenyl-2H-azirine ( 1d ) in benzene solution in the presence of carbon dioxide yields 2-methyl-4-phenyl- ( 3c ) and 2,2-dimethyl-4-phenyl-3-oxazolin-5-one ( 3d ), respectively. Similar cycloadducts are observed (see table) when 2,3-diphenyl-2H-azirine ( 1b ) and 1d are irradiated in the presence of phenylisocyanate, o-tolylisocyanate, phenylisothiocyanate or di-o-tolyl-carbodiimide.  相似文献   

10.
Synthesis and Photochemistry of 3-(2-Thienyl)-2,2-dimethyl-2H-azirine The synthesis of 3-(2-thienyl)-2,2-dimethyl-2 H-azirine (1) is described. UV. irradiation of 1 in benzene solution generates the nitrile isopropylide 2 which reacts in a regiospecific manner with activated C, C and C, O double bonds to give 1-pyrrolines and 3-oxazolines, respectively. With chelidonic acid diethyl ester the cycloaddition of 2 to the C, C double bond is preferred.  相似文献   

11.
Photoinduced Cycloadditions of 2,2-Dimethyl-3-phenyl-2H-azirine with Nitriles and ‘push-pull’ Olefines. Electron deficient nitriles of the type 5a–e in contrast to nonactivated nitriles undergo regiospecific [2+3]cycloadditions to benzonitrile isopropylide ( 2b ), which was generated in situ by irradiation of 2,2-dimethyl-3-phenyl-2H-azirine ( 1b ), to yield the 2H-imidazole derivatives 6a – e (Scheme 2). The structure of the photoproducts was mainly deduced from 13C-NMR. and mass spectrometry. Whereas normal olefins or enolethers do not react with 2b , push-pull olefins of the type 10a – d readily undergo the cycloaddition to give the 3-alkoxy-5,5-dimethyl-2-phenyl-1-pyrrolines 11a – d (Scheme 3 and 4). The structure of the photoproducts 11a – d indicates that the regiospecificity of the cycloaddition corresponds to that of acrylonitriles and acrylesters with 2b .  相似文献   

12.
1,3-Dipolar Addition of 2-Benzonitrilio-2-propanid to 7-Methylthieno[2,3-c]pyridine 1,1-Dioxide and Subsequent Reactions The addition of dipole 2 , generated photochemically from 2,2-dimethyl-3-phenyl-2H-azirine ( 1 ), to 7-methylthieno[2,3-c]pyridine 1,1-dioxide yields the pyrroline derivative 4 as a major product and regioisomer 5 in low yield. Compound 4 can be transformed into the pyrrolidine derivative 11 by ring opening, loss of SO2 and hydrogenation. Bromopyrroline derivative 14 gives either by dehydrohalogenation compound 18 or, by substitution, nitrile 17 or ethoxy derivative 19 . Substitution of 14 and ring opening yields methoxypyrrole derivative 20 , which gives access to the unstable hydroxypyrrole and hydroxypyrrolidine derivative 28 resp. 30 . The vinylsulfone 18 is the starting material for addition-ring-cleavage reactions. Oxidation of pyrroline derivative 4 gives epoxy-substituted N-oxide 39 and di-N-oxide 40 ; and oxidative transformation of pyrrolidine derivative 11 yields the (hydroxymethyl)pyridylpyrrolidine derivative 45 .  相似文献   

13.
Addition Reaction of 3-Dimethylamino-2,2-dimethyl-2H-azirine with Phenylisocyanate and Diphenylketene 3-Dimethylamino-2,2-dimethyl-2H-azirine ( 1a ) reacts with carbon disulfide and isothiocyanates with splitting of the azirine N(1), C(3)-double bond to give dipolar, fivemembered heterocyclic 1:1 adducts. In some cases, these products can undergo secondary reactions to yield 1:2 and 1:3 adducts. In this paper it is shown that the reaction of 1a with phenylisocyanate also takes place by cleavage of the N(1), C(3)-bond, whereas with diphenylketene N(1), C(2)-splitting is observed. The reaction of 1a and phenylisocyanate in hexane at room temperature yields the 1:3 adduct 2 in addition to the trimeric isocyanate 3 (Scheme 1). A mechanism for the formation of 2 is given in Scheme 5. Hydrolysis experiments with the 1:3 adduct 2 , yielding the hydantoins 4–6 and the ureas 7 and 8 (Schemes 3 and 5), show that the formation of this adduct via the intermediates d , e and f is a reversible reaction. The aminoazirines 1a and 1b undergo an addition reaction with diphenylketene to give the 3-oxazolines 14 (Scheme 8), the structure of which has been established by spectral data and oxidative degradation of 14a to the 3-oxazolin-2-one 15 (R1 ? R2 ? CH3, Scheme 9).  相似文献   

14.
Hydrazinolysis of N-(3-Oxo-1-isoindolinyliden)alanin Ethyl Ester, Structure of the Product Treatment of N-(3-oxo-1-isoindolinyliden)alanin ethyl ester (6) with hydrazine hydrate leads to 4-methyl-2,3,4,6-tetrahydro[1,2,4]triazino[3,4-a]isoindole-3, 6-dione ( 8 , Scheme 3) and not to the previously postulated 6-hydroxy-2-methyl-2,3-dihydro-imidazo [2,1-a]phthalazin-3-one ( 7 , cf. [2]). The structure of 8 has been established by an independent synthesis as well as by the X-ray analysis of the reaction product 11 from 8 and 3-dimethylamino-2,2-dimethyl-2 H-azirine ( 1 , Scheme 4). A reaction mechanism for the formation of 8 from 6 is suggested in Scheme 5.  相似文献   

15.
A New 3-Amino-2H-azirine as an Aib-Pro Synthon: Synthesis of the C-Terminal Nonapeptide of Trichovirin I 1B The synthesis of methyl N-(2,2-dimethyl-2H-azirin-3-yl)-L -prolinate ( 3 ), a novel 3-amino-2H-azirine, is described (Scheme 2). It is shown that the reaction of COCl2 with thioamide 5 is remarkably faster than with the corresponding amide 4 , and the yield of 3 is much better in the synthesis starting with 5 . The 3-amino-2H-azirine 3 has been used as a building block of the dipeptide moieties Aib-Pro in the synthesis of nonapeptide 17 (Schemes 4 and 5), the C-terminal 6–14 segment of the peptaibole trichovirin I 1B. The structure of 17 was established by single-crystal X-ray crystallography (Figs.1 and 2).  相似文献   

16.
The reaction of 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1a ) with 4,5-dihydro-7,8-dimethoxy-1,2-benzothiazepin-3-one 1,1-dioxide ( 4 ) in dioxane at room temperature gave the correspondingly substituted 4H-1,2,5-benzothiadiazecin-6-one 1,1-dioxide 5a in 64% yield (Scheme 2). The structure of this novel ten-membered ring-enlargement product was established by X-ray crystallography (Fig.). Under more vigorous conditions (refluxing dichloroethane), 5a was formed together with the isomeric 6a , both in low yield. The 3-(dimethylamino)-2H-azirines 1b and 1c reacted sluggishly to give the two isomeric ring-enlargement products of type 5 and 6 in yields of 24–29% and 2–4%, respectively (Table 1). Even less reactive is 2,2-dimethyl-3-(N-methyl-N-phenylamino)-2H-azirine ( 1d ), which reacted with 4 in MeCN only at 65°. Under these conditions, besides numerous decomposition products, only traces of 5d and 6d were formed. No ring enlargement was observed with the sterically crowded 1e , which bears an isopropyl group at C(2).  相似文献   

17.
3-(Dimethylamino)-2,2-dimethyl-2H-azirine as an Aib Equivalent; Synthesis of Aib Oligopeptides 3-(Dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) reacts with carboxylic acids at 0–25° to give 2-acylamino-N,N,2-trimethylpropionamides ( = 2-acylamino-N,N-dimethylisobutyramide, acyl-Aib-NMe2) in excellent yields (Scheme 2 and 3). Examples of α-amino-, α-hydroxy-, and α-mercapto-carboxylic acids are given. On treatment with HCl in toluene, the terminal dimethylamide group is selectively converted to the corresponding carboxylic acid (→acyl-Aib) via an amide cleavage (Scheme 4 and 5); 1,3-oxazol-5(4H)-ones are intermediates of this amide hydrolysis. This reaction sequence has been used for the extension of peptide chains (Scheme 6). The synthesis of Aib-oligopeptides using this methodology is described (Scheme 8).  相似文献   

18.
Ring Enlargement of Six- to Nine-Membered Heterocycles: Reaction of 3-(Dimethylamino)-2,2-dimethyl-2H-azirine with 3,4-Dihydro-2H-1,2,4-benzothiadiazin-3-one 1,1-Dioxides Reaction of 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) and N-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazin-3-one 1,1-dioxides ( 4 ) in CHCl3 yields 3-(dimethylamino)-4,5,6,7-tetrahydro-1,2,5,7-benzothiatriazonin-6-one 1,1-dioxides 5 , a novel nine-membered heterocyclic system, by ring enlargement (Schemes 2 and 4). In refluxing MeOH, the heterocycle 5a rearranges to give the N-[1-methyl-1-(1,1-dioxo-4H-1,2,4-benzothiadiazin-3-yl)ethyl]-N′, N′-dimethylurea 10 . The three isomeric 2-(methylamino)benzenesufonamides 8,9 , and 11 (Scheme 3) are obtained by naBH4 reduction of 5a and 10 , respectively. Mechanisms for the thermal isomerization 5a → 10 and the NaBH4 reduction of 5a are proposed in Schemes 5 and 6.  相似文献   

19.
3-(Dimethylamino)-2,2-dimethyl-2H,-azirine as an α-Aminoisobutyric-Acid (Aib) Equivalent: Cyclic Depsipeptides via Direct Amid Cyclization In MeCN at room temperature, 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) and α-hydroxycarboxylic acids react to give diamides of type 8 (Scheme 3). Selective cleavage of the terminal N,N-dimethylcarboxamide group in MeCN/H2O leads to the corresponding carboxylic acids 13 (Scheme 4). In toluene/Ph SH , phenyl thioesters of type 11 are formed (see also Scheme 5). Starting with diamides 8 , the formation of morpholin-2,5- diones 10 has been achieved either by direct amide cyclization via intermediate 1,3-oxazol-5(4H)-ones 9 or via base-catalyzed cyclization of the phenyl thioesters 11 (Scheme 3). Reaction of carboxylic acids with 1 , followed by selective amide hydrolysis, has been used for the construction of peptides from α-hydroxy carboxylic acids and repetitive α-aminoisobutyric-acid (Aib) units (Scheme 4). Cyclization of 14a, 17a , and 20a with HCI in toluene at 100° gave the 9-, 12-, and 15-membered cyclic depsipeptides 15, 18 , and 21 , respectively.  相似文献   

20.
Synthesis of 1,3,4-Oxadiazoles and 4,5-Dihydro-l,2,4-triazines from 3-Dimethylamino-2,2-dimethyl-2 Hazirine and Carbohydrazides 3-Dimethylamino-2, 2-dimethyl-2 H-azirine ( 1 ) reacts with aromatic carbohydrazides to give 2-(1-amino-1-methylethyl)-5-aryl-1, 3, 4-oxadiazoles ( 7 , 10 , 11 ). With ethyl carbazate the azirine 1 forms the aminoester 15 , which is easily cyclized to the 4, 5-dihydro-1, 2, 4-triazin-3 (2H)-one 16 . From the reaction of 1 with oxamohydrazide ( 17 ) and oxalodihydrazide 19 the 4, 5-dihydro-1, 2, 4-triazin-3-carboxamide 18 and the symmetric compound 20 , respectively, have been isolated. Reactions supporting the structures of the new compounds are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号