首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proton and carbon-13 NMR spectra of thirteen trialkylmetal derivatives of pyridine, several of which were previously unknown, have been recorded and analysed. The proton NMR spectra show variations in proton chemical shifts but not in proton-proton coupling constants when the metal substituent is changed; the ring proton-metal coupling constants nJ(M? H) in the tin and lead derivatives correspond closely with the corresponding proton-proton couplings nJ(H? H) in pyridine. The carbon-13 chemical shifts of the carbons bound to the metal can apparently be correlated with the electron-donating ability of the trialkylmetal group. In the trimethylstannylpyridines the value of 1J(Sn? Cring) varies greatly with the position of the Me3Sn group.  相似文献   

2.
Silicon-29(δ29Si) NMR chemical shifts are reported for the first time of tris[(trimethylsilyl)methyl] silicon compounds (disilylated derivatives) (Me3SiA)3 CαL, where L = SiBR1R2R3 and where R varies widely in electronegativity. 29Si chemical shifts exhibit good correlation with the electronegativities of the groups bonded to the silicon atom. The 13C NMR spectra of these compounds have been recorded and assigned. δ13Cα is shown to depend on the type of substitutent on SiB. The variation of 29SiH coupling constants with electronegativity of R is studied.  相似文献   

3.
The 29Si-NMR chemical shifts δ(29Si) of (CH3)4?nSiXn compounds and some 13C-NMR chemical shifts δ(13C) of analogous carbon compounds are discussed by means of relative paramagnetic screening constants σ*, calculated by a simplified model. In this model only the Si(3P)- and C(2P)-orbitals are considered; for the calculations, the electronegativities of Si, C and the X-substituents and a single empirical parameter are necessary. The calculated values of σ* are in good agreement with the change of the chemical shifts which are observed for the (CH3)4?nMXn compounds with different X and n. These results clearly show that δ(29Si) and δ(13C) depend primarily on the σ-charge of the Si- and C-atom, and that (P? d)π-interactions on the Si-atom are of minor importance.  相似文献   

4.
29Si, 14N 13C and 1H NMR data are presented for a series of homologous (methylethoxysilyl)alkylamines of the type (CH3)3?n(C2H5O)nSi(CH2)mNH2(n=o to 3; m = 1 to 4). The measured 13C and 1H chemical shifts correlate with the total net charges QA on the corressponding atoms, estimated by the Del Re method. 14N and 29Si chemical shifts which do not show simple linear relationships to the charges are found to correlate with the relative basicities of the compounds. The influence of the remote substituent (? NH2 and others) on the 29Si chemical shifts is shown to depend on the number and nature of substituents directly on the silicon atom. Argyments for d-orbital participation in the Si? O bounds are given. The chemical shifts of 29Si, 14N and 13C nuclei are not consistent with the fromation of intramolecular ‘long bonds’ between the solicon and nitrogen atoms in aliphatic silymethylamines.  相似文献   

5.
13C chemical shifts and 31P? 13C spin–spin coupling constants are reported for 10 alkyl-, 20 benzyl- and 3 (naphthylmethyl)-phosphonates. While in saturated aliphatic chains P–C couplings over more than four bonds cannot be resolved, couplings over up to seven bonds are observed in the benzyl type systems. Conformational and substituent effects on J(PC) are studied and discussed. nJ(PF) (n = 4, 5, 6) are reported for the isomeric (fluorobenzyl)phosphonates and nJ(PP) (n = 5, 6, 7) were obtained from the 13C satellites in the 31P n.m.r. spectra of the isomeric diphosphonates, C6H4[CH2P(O)(OEt)2]2. Comparison of those 13C absorptions of the latter, which represent the X parts of ABX or AA′X spin systems, with the spectra of the corresponding (methylbenzyl)phosphonates, CH3C6H4CH2P(O)(OEt)2, yielded the relative signs of nJ(PC) (n = 2–6).  相似文献   

6.
Abstract

The orientational ordering of three 4′-cyanophenyl-4-alkylbenzoates (with number of carbons in the alkyl chain, n = 6,7 and 8; hereafter abbreviated as n-CPBs) has been investigated by 13C NMR. The order parameters of different molecular segments in the nematic phase of the n-CPBs were determined by the two-dimensional technique of separated local field (SLF) spectroscopy combined with off-magic-axis, variable-angle spinning (VAS) of the sample. The carbon-13 chemical shifts for each carbon nucleus in these compounds were determined by slowly spinning the sample parallel to the applied magnetic field. The order parameters obtained from SLF/VAS studies are linearly related to the corresponding anisotropic carbon-13 chemical shifts. These results provide a convenient way to obtain the order parameters for other homologous members of this liquid crystal series by direct measurement of only their carbon-13 chemical shifts in conjunction with the observed linear relationship between order parameters and chemical shifts.  相似文献   

7.
29Si, 13C and 1H NMR spectra are reported for the series of linear permethylpolysilanes Me(SiMe2)nMe where n = 1 to 6, for the cyclic permethylpolysilanes (Me2Si)n where n = 5 to 8, and for a few related compounds. For linear polysilanes the 29Si and 13C chemical shifts can be accurately calculated from simple additivity relationships based on the number of silicon atoms in α, β, γ and δ positions. Adjacent (α) silicon atoms lead to upfield shifts in the 29Si and 13C resonances, whereas more remote silicon atoms lead to downfield shifts. The 29Si chemical shifts of the polysilane chains are linearly related to the 13C shifts of the carbon atoms attached to the silicon. The 29Si and 13C resonances of the cyclic silanes deviate from this relationship. Ring current effects arising from σ delocalization are suggested as an explanation for the deviations. Proton-coupled 29Si NMR spectra are reported for Me3SiSiMe3 and for (Me2Si)n, n = 5 to 7.  相似文献   

8.
15N NMR data of a series of 3‐alkyl[aryl] substituted 5‐trichloromethyl‐1,2‐dimethyl‐1H‐pyrazolium chlorides (where the 3‐substituents are H, Me, Et, n‐Pr, n‐Bu, n‐Pe, n‐Hex, (CH2)5CO2Et, CH2Br, Ph and 4‐Br‐C6H4), are reported. The 15N substituent chemical shifts (SCS) parameters are determined and these data are compared with the 13C SCS values and data obtained by MO calculations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The two stereochemically distinct two-bond carbon-13- hydrogen coupling constants J(13C? CH), for α-chlorostyrene-α-13C have been shown to be of similar magnitude but opposite sign (?6.3 and +5.6 Hz). A simple additivity relationship which adequately reproduces all the reported J(13C? CH) values for chloroethylenes has been found.  相似文献   

10.
Platinum-195 spectra are reported for [Ptn(CO)2n]2- (n = 3, 6, 9, 12 and 15) and carbon-13 spectra are reported for n = 6, 9 and 12 over a range of temperatures. The spectra provide evidence for (a) intramolecular rotation of the Pt3-triangles about the principal three-fold axis, (b) inter-exchange of Pt3-triangles, (c) lack of terminal/edge carbonyl exchange within the Pt3(CO)3(μ-CO)3 group. Evidence is also presented for the formation of [Ni3Pt3(CO)12]2- on mixing [Pt6(CO)12]2- [Ni6(CO)12]2-.  相似文献   

11.
Synthesis and NMR Spectra of Some 13C-Labelled Thio- and Seleno-ethers, -acetals, and -orthoesters Twenty-seven different open-chain and cyclic derivatives (RX)nCH4-n and (RX)nCH3-nR′ with n = 1?3, X = S or Se, R,R′ = alkyl or aryl, 1,3,5-trithiane, and bis-(dimethylsulfonio)methane and -methanide with single or multiple 13C-labelling have been synthesized. The 13C-NMR spectra of the sulfur and selenim compounds have been measured, and the dependence of the chemical shifts (δc) and coupling constants [′J(C,H), ′J(Se,C)] from the substitution pattern in discussed (Fig. 1) and compared with the polyhalogeno-methanes (Fig. 2).  相似文献   

12.
The 13C and 119Sn NMR spectra of 33 organotin compounds of the type RSnMenCl3 ? n and related types are discussed. The substituent effects of the groups SnMe3, SnMe2Cl, SnMeCl2 and SnCl3 (and of some related groups) on the carbon chemical shifts in the alkyl group R have been determined; the SnMe3 group causes a small upfield shift of the carbon attached to it, while the other groups cause downfield shifts. The shifts show a monotonic change on replacing methyl groups in Me3Sn by chlorine atoms. The effects on carbons further removed from the tin atom are discussed. Variation in R causes little change in nJ(Sn? C) or δ(119Sn).  相似文献   

13.
Unsymmetrical and generalized indirect covariance processing methods provide a means of mathematically combining pairs of 2D NMR spectra that share a common frequency domain to facilitate the extraction of correlation information. Previous reports have focused on the combination of HSQC spectra with 1,1‐, 1,n‐, and inverted 1JCC 1,n‐ADEQUATE spectra to afford carbon–carbon correlation spectra that allow the extraction of direct (1JCC), long‐range (nJCC, where n ≥ 2), and 1JCC‐edited long‐range correlation data, respectively. Covariance processing of HMBC and 1,1‐ADEQUATE spectra has also recently been reported, allowing convenient, high‐sensitivity access to nJCC correlation data equivalent to the much lower sensitivity n,1‐ADEQUATE experiment. Furthermore, HMBC‐1,1‐ADEQUATE correlations are observed in the F1 frequency domain at the intrinsic chemical shift of the 13C resonance in question rather than at the double‐quantum frequency of the pair of correlated carbons, as visualized by the n,1, and m,n‐ADEQUATE experiments, greatly simplifying data interpretation. In an extension of previous work, the covariance processing of HMBC and 1,n‐ADEQUATE spectra is now reported. The resulting HMBC‐1,n‐ADEQUATE spectrum affords long‐range carbon–carbon correlation data equivalent to the very low sensitivity m,n‐ADEQUATE experiment. In addition to the significantly higher sensitivity of the covariance calculated spectrum, correlations in the HMBC‐1,n‐ADEQUATE spectrum are again detected at the intrinsic 13C chemical shifts of the correlated carbons rather than at the double‐quantum frequency of the pair of correlated carbons. HMBC‐1,n‐ADEQUATE spectra can provide correlations ranging from diagonal (0JCC or diagonal correlations) to 4JCC under normal circumstances to as much as 6JCC in rare instances. The experiment affords the potential means of establishing the structures of severely proton‐deficient molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
From 13C-7 labeled toluene the following 13C-methyl o- and p-substituted toluenes were synthesized: o-NO2, -NH2, -I and ? CN; p-NO2 and -NH2. Each of these labeled compounds was studied by carbon magnetic resonance to determine all carbon-13? carbon-13 splittings involving the methyl carbon.  相似文献   

15.
Isomeric mixtures of compounds MenM(CH?CHMe)4?n (M=Si, Pb; n=0?3) have been prepared and studied, as well as pure Me3M(CMe?CH2) and mixtures containing propenyl isopropenyl residues bonded to silicon and lead. 1H, 13C, 29Si and 207Pb NMR data are presented; as previously observed for the corresponding tin compounds, the 29Si and 207Pb shifts for the Me3MC3H5 isomers can be used to calculate the shifts expected for the other isomers; while for lead the agreement is good, calculated and observed values for silicon diverge with decreasing n due, at least in part, to steric factors.  相似文献   

16.
A number of alkyltin(IV) paratoluenesulfonates, RnSn(OSO2C6H4CH3‐4)4?n (n = 2, 3; R = C2H5, n‐C3H7, n‐C4H9), have been prepared and IR spectra and solution NMR (1H, 13C, 119Sn) are reported for these compounds, including (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), the NMR spectra of which have not been reported previously. From the chemical shift δ(119Sn) and the coupling constants 1J(13C, 119Sn) and 2J(1H, 119Sn), the coordination of the tin atom and the geometry of its coordination sphere in solutions of these compounds is suggested. IR spectra of the compounds are very similar to that observed for the paratoluenesulfonate anion in its sodium salt. The studies indicate that diorganotin(IV) paratoluenesulfonates, and the previously reported compounds (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), contain bridging SO3X groups that yield polymeric structures with hexacoordination around tin and contain non‐linear C? Sn? C bonds. In triorganotin(IV) sulfonates, pentacoordination for tin with a planar SnC3 skeleton and bidentate bridging paratoluenesulfonate anionic groups are suggested by IR and NMR spectral studies. The X‐ray structure shows [(n‐C4H9)2Sn(OSO2C6H4CH3‐4)2·2H2O] to be monomeric containing six‐coordinate tin and crystallizes from methanol–chloroform in monoclinic space group C2/c. The Sn? O (paratoluenesulfonate) bond distance (2.26(2) Å) is indicative of a relatively high degree of ionic character in the metal–anion bonds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
One bond and long range 13C? 1H coupling constants for some methoxy-, amino- and hydroxypyridines are described. An unambiguous assignment of carbon-13 resonances is carried out based on the analysis of the fine splitting caused by long range couplings. J values for compounds other than 2- and 4-hydroxy-pyridines are explainable in terms of the values previouly obtained for cyano- and methylpyridines. The hydroxypyridine-pyridone tautomerism affects 2J(Hα), i.e. 2J associated with the α proton. This effect can be used to differentiate pyridones from hydroxypyridines.  相似文献   

18.
The carbon-13 NMR spectra of coumarin, 6-, 7-, 8-methoxycoumarin, and 5,7-, 7,8-, 5,8- and 6,7-dimethoxycoumarin have been measured and assigned. It is shown that substituent induced chemical shifts S(δ) in the mono- and disubstituted systems correlate well with the HMO atom-atom polarisibilities πij of the parent compound: Sii) = 80.13 πij with a standard deviation of 1.42 ppm and a correlation factor of 0.994. Correlations between δ(13C) values and charge densities calculated by various semi-empirical methods are less successful.  相似文献   

19.
The linear relationship between the coupling constants 1J(Sn? 13C) and 2J(Sn? H), observed for a number of organotin compounds, does not hold for coupling in the Sn? CHnCl3?n group of mono- and dichloromethyltin compounds. A complete determination of all NMR parameters of the compounds Me3Sn-CHnCl3?n (n = 0 to 3) shows no further anomalies, indicating that steric factors must be responsible for the unusually low values of 2J(Sn? H) in the SnCHnCl3?n group. Molecular weight measurements support this theory, showing that the chlorine-containing compounds are associated.  相似文献   

20.
Nuclear magnetic resonance spectroscopy is used to study netural imines formed from various aldehydes and primary amines in aqueous solution. The imines are then extracted into CDCl3 and their formation constants in the aqueous phase are calculated as a function of pD. The results are in agreement with previous studies. Decoupling experiments are used to prove that additional splitting of the proton spectrum is due to long range coupling rather than syn-anti isomerism. The possibility of utilizing the formation of Schiff bases in aqueous solution for synthetic purposes is discussed and the 13C magnetic resonance spectrum of the imine, isolated from the reaction of 2-thiophenecarbaldehyde and n-butylamine, is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号