首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
常压下低温等离子体光辐射特性测量   总被引:1,自引:1,他引:0  
采用常压空气辉光放电(APGD)技术在自行设计的电极板表面产生出一薄层低温等离子体,并利用光谱诊断光学系统对所产生的等离子体进行光辐射特性实验测量;实验获取了几种电极板在几个不同加载功率下的辐射光谱,并对光谱的辐射强度进行平均化处理分析。分析结果表明此沿面APGD的光辐射强度与加载功率之间存在线性增加的关系,且随电极板静态电容的增加而增强。该方法可以为控制APGD等离子体的产生量提供一种简便可行的途径。  相似文献   

2.
钱维莹  陈健 《物理与工程》2005,15(1):38-41,44
讨论了常压均匀辉光放电等离子体的形成和杀菌机理,提出了等离子体杀菌技术,并通过实例介绍了常压均匀辉光放电等离子体在空气过滤杀菌中的效果和实际使用价值。  相似文献   

3.
为了对绝缘阻挡放电(DBD)等离子体进行参数优化,以常压DBD等离子体为研究对象,在常温常压下使用可见光光栅光谱仪对等离子体发光光谱进行了诊断,得到了N2和O2的第二正带跃迁谱线. 通过对等离子体光谱的分析发现,等离子体发射光谱强度随着电压升高而增大,并且在39—41kHz的范围内可以获得稳定的等离子体发光. 与此同时,Helium气体的引入,可以在很大程度上增加等离子体的发光强度. 与理论分析结合,证实了光谱测量方法在DBD等离子体研究上的可行性. 关键词: 绝缘阻挡放电 光谱 荧光 光谱仪  相似文献   

4.
为了对绝缘阻挡放电(DBD)等离子体进行参数优化,以常压DBD等离子体为研究对象,在常温常压下使用可见光光栅光谱仪对等离子体发光光谱进行了诊断,得到了N2和O2的第二正带跃迁谱线. 通过对等离子体光谱的分析发现,等离子体发射光谱强度随着电压升高而增大,并且在39—41kHz的范围内可以获得稳定的等离子体发光. 与此同时,Helium气体的引入,可以在很大程度上增加等离子体的发光强度. 与理论分析结合,证实了光谱测量方法在DBD等离子体研究上的可行性.  相似文献   

5.
空气中的大气压辉光放电通常因放电易过渡到火花状态而难以产生。在静态大气压空气针-板等离子体发生器中,采用阻容耦合负反馈方法控制等离子体放电发展过程,成功地抑制了辉光放电向火花放电的过渡,产生了稳定的交流辉光放电。研究了电压、电极间距等参数变化对放电的影响。  相似文献   

6.
张增辉  邵先军  张冠军  李娅西  彭兆裕 《物理学报》2012,61(4):45205-045205
为了研究氩气(Ar)中介质阻挡大气压辉光放电(APGD)的放电机理, 通过建立一个一维的多粒子自洽耦合流体模型, 采用有限元方法进行数值计算, 得到了气体间隙压降、介质表面电荷密度、放电电流密度随时间的周期变化波形, 以及电子、离子、亚稳态粒子密度和空间电场强度的时空分布. 仿真计算结果表明:介质表面积聚的电荷对于放电的过程的起始及熄灭具有重要作用;当增大外施电压时, 放电击穿时刻提前, 放电电流密度和介质表面电荷密度峰值增大, 表明放电过程更加剧烈;随着阻挡介质相对介电常数的增大, 放电电流密度也随之增大. 各粒子密度及电场的时空分布表明放电过程在外施电压半个周期中只有一次放电, 且存在明显的阴极位降区、负辉区、等离子体正柱区等辉光放电的典型区域, 为大气压辉光放电(APGD).  相似文献   

7.
张梅  张文静 《大学物理》2007,26(6):44-46
相对于传统的灭菌方法,利用常压低温等离子体灭菌有许多优点.简单介绍了一个常压低温等离子体灭菌实验装置,该装置主要由电源、匹配测量电路、放电电极和真空系统及光谱检测系统等4个部分组成,并给出了运行调试的结果.  相似文献   

8.
纳秒脉冲空气辉光放电等离子体及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用基于半导体断路开关的纳秒脉冲高压电源,在两个金属电极之间产生放电区间为1 600 mm×100 mm×25 mm的常压辉光空气等离子体。等离子体发生器采用负高压针电极阵列与平板阳极结构,针电极的直径为1 mm,长度为20 mm,针电极之间的间隔为20 mm,针电极与平板零电位之间的距离为25 mm,在每个负高压针电极末端周围同时形成圆锥形辉光放电,在平板地电极则形成大面积辉光放电。采用电压探针测量了该新型等离子体的放电特性,结果表明:放电脉冲的上升时间为26 ns,最高脉冲输出峰值电压为27 kV;利用该辉光等离子体对幅宽为1 000 mm聚四氟乙烯薄膜进行了表面改性处理,处理后其表面接触角由原来的124°降到69°,亲水性能大为提高。  相似文献   

9.
分析比较了低温等离子体模拟中采用的流体模型、粒子模型和混合模拟方法及在放电特性分析中采用的电路模拟方法。给出了每种方法的基本原理,探讨了它们的适应性。利用粒子模型对外磁镜场作用下四阳极装置辉光放电所产生等离子体进行了模拟,分析了磁场对电子密度径向分布的影响。  相似文献   

10.
本文介绍了一种改进型的微波等离子体增强辉光放电(MPEGD)光源,对这种级联光源中的工作气体Ar的光谱特性进行了较详细的考察,对单纯微波等离子体放电,单纯辉光放电以及微波等离子体增强辉光放电的Ar谱线进行了研究,并讨论了微波功率等的影响,认为这种微波等离子体增强辉光放电光源在中低能级跃产生的谱线有明显的增强作用。  相似文献   

11.
在电弧等离子体的光谱诊断中,标准温度法测温原理与目前先进的图像传感技术相结合,通过特征谱图像完成电弧全场温度信息采集,因其良好的时、空分辨率而被广泛应用于电弧温度测量。但是谱线的发射系数与等离子体温度不是单调变化关系,传统标准温度法选取一条ArⅠ谱线完成对电弧等离子体的测量,在电弧内部的高温电离区域产生谱线辐射强度降低的现象,需要人为判定电弧不同位置所处的温度区间才能完成温度的计算,整个过程无法通过软件自主完成。针对此问题,根据电弧等离子体的局部热力学平衡条件,探索一种基于双特征谱线的标准温度法测温原理,通过融合电弧在外层低温区域聚集的Ar原子发出的ArⅠ谱线发射系数场,和在高温区域的Ar一次电离离子所发出的ArⅡ特征谱线发射系数场,将达到ArⅠ谱线标准温度的位置处的ArⅡ谱线发射系数作为电弧不同温度区域的判定依据,完成电弧等离子体高温区域的自动判别,继而应用ArⅠ谱线发射系数与温度对应关系在电弧高、低温区域分别计算电弧温度,消除单一的ArⅠ谱线发射系数场暗区给计算带来的不利影响;设计并搭建了一种镜前分幅采集系统,其中分光镜将弧光等能量分成两束,利用两组反射镜和窄带滤光片建立起两路光学通道,使CMOS在一次曝光中完成两组电弧特征谱图像的采集,并且两幅图像的采集时刻、焦距、光圈等拍摄参数完全一致,达到良好的时间、空间一致性,从而减小谱线融合时误差的输出,满足了原位获取两组电弧特征谱图像的需求;为验证测量系统可行性以及后期的电弧图像提取,以黑白棋盘为标靶,用Harris算子对系统采集的图像进行扫描,根据角点坐标证明系统所采集的两幅图像具有良好的一致性,并且据此将两幅图像做归一化处理,以便后期的电弧特征谱图像的提取;通过假设所测电弧等离子具有轴对称属性,以CMOS所采集的特征谱图像亮度信息作为电弧发射系数场在不同角度下的投影依据,经过中值滤波降噪后,利用ML-EM迭代重建算法求解电弧的三维发射系数分布。实验中,选择受自吸收效应影响较小的ArⅠ696.5 nm谱线和ArⅡ480.6 nm谱线为测量目标,并且在696.5 nm谱线的光通路中加入OD0.4的中性减光片,使两幅特征谱图像的最高亮度值保持一致。选取150A焊接等离子弧为测量对象,经ML-EM法三维还原后,将两条谱线发射系数场等像素融合,在ArⅠ谱线发射系数达到最大值的像素点位置处,ArⅡ谱线发射系数达到εrp,判定ArⅡ谱线发射系数大于εrp的像素点位置为电弧高温区域,其余位置为低温区域,最终在不同温度区域自动完成焊接等离子弧的温度计算。实验结果表明696.5 nm谱线和480.6 nm谱线发射系数场融合后可以自动识别电弧高温区域,继而完成电弧等离子体的自动测量,为电弧温度实时监测的实现提供更多可能。  相似文献   

12.
等离子体状态参数测量是研究等离子体特性,开展等离子体模拟再入环境、等离子体隐身、等离子体减阻以及边界层控制等研究的重要基础.利用等离子体射流的自发辐射光谱,提出了一种基于光学多普勒频移效应的等离子体超声速射流测速的方法.首先,测量了等离子体中Ar原子产生的自发辐射光谱,选择696.54 nm的特征谱线,作为等离子体发生...  相似文献   

13.
背景扣除和强度校正对激光诱导等离子体光谱参数的影响   总被引:1,自引:0,他引:1  
激光诱导击穿光谱技术以其无需样品预处理、分析速度快、能实现多元素同时检测和远程分析等优点已经被广泛应用于诸多领域的物质成分定性或定量分析。该技术的理论基础是激光诱导等离子体。对等离子体光谱参数(如光谱谱线强度、等离子体温度等)的准确测量是利用该技术进行定性或定量分析的前提条件。实际的实验系统中,由于仪器本身固有的性能限制,会造成采集光谱信号的失真,从而限制等离子体光谱参数的精确测量或计算。为了克服仪器固有性能的影响,分析了实验系统所用中阶梯光栅光谱仪和传输光纤的固有性能缺点对光谱信号背景噪声和元素谱线绝对强度的影响,然后采用剥峰法对光谱信号中存在的锯齿状背景噪声进行扣除,利用辐射定标光源的标准光谱数据对谱线绝对强度进行校正,并对比了背景扣除和强度校正对等离子体谱线强度和等离子体温度的影响,实验表明谱线强度校正对合金钢等离子体380 nm以下的光谱信号具有较大影响,通过背景扣除和强度校正后,等离子体温度由13 401.75 K降低至8 980.72 K,玻尔兹曼平面法求解等离子体温度的拟合决定系数由0.60提高至0.91。因此在光谱数据处理之前对测量光谱进行背景扣除和强度校正是十分必要的,为提供可靠地光谱数据进行物质成分定性或定量分析奠定了基础。  相似文献   

14.
光谱辐射照度测试研究   总被引:1,自引:0,他引:1  
占春连  李正琪  刘建平  卢飞  陈超 《光子学报》2009,38(5):1245-1249
介绍了光谱辐射照度的测试方法.该方法以高温黑体为基础复现光谱辐射照度,并将复现获得的量值采用替代法对光谱辐射照度标准灯进行量值传递与测试,具有测量不确定度高等优点.同时,给出了采用这种方法的测量结果,介绍了BB3200K型高温黑体及光谱辐射照度测量装置.测量结果表明,采用本文方法可获得高稳定性和理想的测量结果.  相似文献   

15.
设计了一种用于飞行器隐身的等离子体发生器。采用有机玻璃板压制胶合成薄壁长方体空腔结构。以正弦交流电为电源,氩气为工作气体,在低气压下进行了辉光放电实验。采用发射光谱诊断技术对氩等离子体进行实验研究。文中通过对测得的光谱信号作玻尔兹曼曲线斜率图,计算得到等离子体的电子温度:11429K。采用S tark展宽法测定了等离子体的电子数密度:4.43×1018cm-3。测试结果表明:所设计的等离子体发生器产生的等离子体具备低温等离子体的典型温度,所产生的电子数密度具有良好的隐身效果。  相似文献   

16.
利用Nd:YAG激光汤姆逊散射多道测量系统对等离子体多空间点的电子温度和密度进行了测量。用标准光源和电扫描单色仪构成的标定系统对散射光谱的响应系数进行了标定。给出了等离子体中心附近6空间点的温度和密度的测量结果,时间分辨率为100 ms,空间分辨率约为2.2 cm。对实验结果的不确定度进行了估计,为-12% ~ 12%。实验结果证明:系统可测量等离子体温度的空间范围为-35 ~ -3 cm,实验数据稳定可靠。  相似文献   

17.
 利用Nd:YAG激光汤姆逊散射多道测量系统对等离子体多空间点的电子温度和密度进行了测量。用标准光源和电扫描单色仪构成的标定系统对散射光谱的响应系数进行了标定。给出了等离子体中心附近6空间点的温度和密度的测量结果,时间分辨率为100 ms,空间分辨率约为2.2 cm。对实验结果的不确定度进行了估计,为-12% ~ 12%。实验结果证明:系统可测量等离子体温度的空间范围为-35 ~ -3 cm,实验数据稳定可靠。  相似文献   

18.
激光诱导等离子体LTE态判定方法研究   总被引:1,自引:0,他引:1  
针对目前等离子体温度测量中常用的Boltzmann平面法和双线法的测量精度较差的问题,提出结合Boltzmann-Maxwell分布和Saha-Eggert公式来提高等离子温度的测量精度;根据高斯公式的面积与峰值关系建立了发射谱线线宽的简便算法,并通过谱线的Stark展宽计算等离子体的电子密度;建立了以McWhirter准则的等离子局部热平衡(LTE)态判据。以铝为被测样品的实验结果表明,随着激光能量的增加,等离子体温度和电子密度随之呈线性上升趋势;激光能量在127~510 mJ范围内的等离子体电子密度变化范围为1.305 32×1017~1.873 22×1017 cm-3,等离子体温度的变化范围为12 586~12 957 K,根据McWhirter准则本实验中所有等离子体均满足LTE态阈值条件;针对在光谱仪波段内可观测到的处于同一电离态谱线相对较少的铝元素,在不适合用Boltzmann平面法计算温度时,利用Saha-Boltzmann方法对100组铝等离子体光谱进行温度测量的相对标准偏差(RSD)为0.4%,相比于双线法的1.3%,大幅提高了测量精度。该计算方法可用于快速计算等离子体温度、电子密度及判断等离子体LTE态,在自由定标、光谱有效性分析、谱线的温度校正、确定最佳采光位置以及等离子体LTE分布状态等研究中都有较高的应用价值。  相似文献   

19.
为了研究样品温度对激光诱导击穿Cu等离子体特征参数的影响,以黄铜为研究对象,在优化的实验条件下采用波长为532 nm的Nd∶YAG纳秒脉冲激光诱导激发不同温度下的块状黄铜,测量了Cu等离子体的特征谱线强度和信噪比;同时在局部热平衡条件下利用Boltzmann斜线法和Stark展宽法分析计算了不同的样品温度条件下等离子体电子温度和电子密度。实验结果表明,在激光功率为60 mW时,随着样品温度的升高,Cu的特征谱线强度和信噪比逐渐增加,样品温度为130 ℃时达到最大值,然后趋于饱和。计算表明,黄铜样品中Cu元素Cu Ⅰ 329.05 nm,Cu Ⅰ 427.51 nm,Cu Ⅰ 458.71 nm,Cu Ⅰ 510.55 nm,Cu Ⅰ 515.32 nm,Cu Ⅰ 521.82 nm, Cu Ⅰ 529.25 nm,Cu Ⅰ 578.21 nm八条谱线在130℃的相对强度相较于室温(18 ℃)下分别提高了11.55倍、4.53倍、4.72倍,3.31倍、4.47倍、4.60倍、4.25倍、4.55倍,光谱信噪比分别增大了1.35倍,2.29倍、1.76倍、2.50倍、2.45倍、2.28倍、2.50倍,2.53倍。分析认为,升高样品温度会增大样品的烧蚀质量,相对于温度较低状态增加了等离子体中样品粒子浓度,进而提高等离子体发射光谱强度。所以,适当升高样品温度能够提高谱线强度和信噪比,从而增强LIBS技术检测分析光谱微弱信号的测量精度,改善痕量元素的检测灵敏度。同时研究了改变样品温度时等离子体电子温度和电子密度的变化趋势。计算表明,当样品温度从室温上升到130 ℃的过程中,等离子体的电子温度由4 723 K上升到7 121 K时基本不再变化。这种变化规律与发射谱线强度和信噪比变化趋势一致。分析认为,这主要是由于在升高样品温度的初始阶段,激光烧蚀量增大,等离子体内能增大,从而导致等离子体电子温度升高。当激光烧蚀样品的量达到一定值后不再变化,激光能量被激发溅射出来的样品蒸发物以及尘粒的吸收、散射和反射,导致激光能量密度降低,电子温度趋于饱和,达到某种动态平衡。选用一条Cu原子谱线(324.75 nm)的Stark展宽系数计算激光等离子体的电子密度,同时研究改变样品温度时等离子电子密度的变化趋势,计算表明在样品温度为130 ℃时,Cu Ⅰ 324.75 nm对应的等离子电子密度相较于室温(18 ℃)条件下增大了1.74×1017 cm-3。该变化趋势与电子温度的变化趋势一致。适当升高样品温度使得电子密度增大,从而提高电子和原子的碰撞几率,激发更多的原子,这是增强光谱谱线强度的原因之一。由此可见,升高样品温度是一种便捷的提高LIBS检测灵敏度的有效手段。  相似文献   

20.
针对采用蓝光激发荧光粉产生白光的YAG型白光LED,通过分析其光谱波谷特性,采用常规可见光光谱仪和温控系统设计了一套基于光谱特征参量的LED结温测试系统.测量方法分为定标函数的测定和任意状态下的测量两部分.首先采用光谱仪测量在给定的多个不同结温和正常驱动电流下的相对发光光谱数据,再分析其光谱波谷处的相对光谱强度.从实用性和降低成本的角度考虑,采用正常工作电流驱动,但以正常工作电流驱动下的LED在光谱仪的固定反应时间内其自加热效应不可忽略.因此采用选定基准状态法,将各温度下的相对发光光谱强度与基准状态下的逐点作差得到相应的发光光谱强度差,同时为了减少温控系统引入的温度偏差,同样将各温度与基准温度作差得到相应的结温差.实验表明高低色温大功率LED的结温差和发光光谱强度差经过一定的函数拟合形成的定标函数其线性度都较高,R2达到0.99以上;利用定标函数,可以测量出在任意状态下的LED结温.最后将采用本方法得出的高低色温LED在不同条件下的结温数据与通过Mentor Graphics公司的T3Ster仪器的测量结果进行了比较,最大偏离度为2.82%,在可接受的误差范围内,表明此方法完全具备可行性,具有一定的实用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号