首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shamsipur M  Esmaeili A  Amini MK 《Talanta》1989,36(12):1300-1302
The complexation reactions between murexide and Co2+, Ni2+ and Cu2+ in C2H5OH-H2O mixtures have been investigated spectrophotometrically. The formation constants of the 1:1 complexes formed increase in the order Co2+ < Ni2+ < Cu2+ for all solvent mixtures studied, and log Kf is a linear function of the mole fraction of ethanol. The heat of complexation was determined calorimetrically for the nickel and copper complexes. The values of ΔH° and ΔS° are solvent-dependent, and all three complexes have negative ΔH° and positive ΔS° values.  相似文献   

2.
2-Methyl pyrazine (2MP) has led to significant interest for its industrial and pharmaceutical uses. The new vapor–liquid equilibria (VLE) at 353.15 K and excess molar volumes (VE) at 298.15 K over the whole mole fraction range for seven binaries (water, n-hexane, cyclohexane, n-heptane, methylcyclopentane (MCP), methylcyclohexane (MCH) and ethyl acetate (EA) with 2MP) have been measured. VLE were measured by using headspace gas chromatography and VE were determined using precision density meter. The water+2MP system has only the minimum boiling azeotrope. The experimental VLE and VE data were well correlated in terms of common gE models and Redlich–Kister equation, respectively.  相似文献   

3.
The integral enthalpies of solution of glycylglycine and diglycylglycine in water–ethanol, water–n-propanol and water–i-propanol mixtures were measured at 298.15 K and alcohol mole fraction concentrations (x2) ranging up to 0.3 by calorimetry. The ΔsolH° and ΔtrH° vs. x2 were found to have extrema. Enthalpic coefficients of pairwise interactions (hxy) between peptide and alcohol molecules were positive and increased in the series ethanol, n-propanol, i-propanol.  相似文献   

4.
Excess molar enthalpies HEm of dimethylcarbonate, diethylcarbonate or propylene carbonate + trans-1,2-dichloroethylene, + trichloroethylene, and + tetrachloroethylene, respectively have been determined at 298.15 K using an LKB flow-microcalorimeter. Experimental data have been correlated by means of the Redlich-Kister equation and adjustable parameters have been evaluated by least-squares analysis. The HEm values range from a minimum value of − 1000 J mol−1 for diethylcarbonate + trans-1,2-dichloroethylene up to a maximum of 920 J mol−1 for dimethylcarbonate + tetrachloroethylene. For each series of mixtures, a systematic increase in HEm with an increase in the number of Cl atoms in the chloroalkene molecule has been noted. The results are discussed in terms of the molecular interactions.  相似文献   

5.
Excess molar enthalpies HE and excess molar volumes VE have been measured, as a function of mole fraction x1, at 298.15 K and atmospheric pressure for the five liquid mixtures (x11,4-C6H4F2 + x2n-ClH2l+2), l = 7, 8, 10, 12 and 16. In addition, HE and excess molar heat capacities CPE at constant pressure have been determined for the two liquid mixtures (x1C6F6 + x2n-ClH2l+2), l = 7 and 14, at the same temperature and pressure. The instruments used were flow microcalorimeters of the Picker design (the HE version was equipped with separators) and a vibrating-tube densimeter, respectively.

The excess enthalpies of the five difluorobenzene mixtures are all positive and quite large; they increase with increasing chain length l of the n-alkane from HE(x1 = 0.5)/(J mol−1) = 1050 for l = 7 to 1359 for l = 16. The corresponding excess volumes VE are all positive and also increase with increasing l: VE(x1 = 0.5)/(cm3 mol−1) = 0.650 for l = 7 and 1.080 for l = 16. Interestingly, the excess enthalphies of the corresponding mixtures with hexafluorobenzene are only about 5% larger, whereas the excess volumes of (x1C6F6 + x2n-ClH2l+2) are roughly twice as large as those of their counterparts in the series containing 1,4-C6H4F2. Specifically, at 298.15 K HE(x1 = 0.5)/(J mol−1) = 1119 for (x1C6F6 + x2n-C7H16) and 1324 for (x1C6F6 + x2n-C14H30), and for the same mixtures VE(x1 = 0.5)/(cm3 mol−1) = 1.882 and 2.093, respectively. The excess heat capacities for both systems are negative and of about the same magnitude as the excess heat capacities of mixtures of fluorobenzene with the same n-alkanes (Roux et al., 1984): CPE(x1 = 0.5)/(J K−1 mol−1) = −1.18 for (x1C6F6 + x2n-C7H16), and −2.25 for (x1C6F6 + x2n-C14H30). The curve CPE vs. (x1 for x1C6F6 + x2n-C14H30) shows a sort of “hump” for x1 0.5, which is presumed to indicate emerging W-shape composition dependence at lower temperatures.  相似文献   


6.
Experimental results are reported of excess molar volumes VE and excess molar enthalpies HE for binary mixtures of 1-propanol, 2-propanol, 1-butanol and 2-butanol with diisopropyl ether (DIPE) and dibutyl ether (DBE) at 298.15 K. A vibrating-tube densitometer was used to determine VE, and HE was measured using a quasi-isothermal flow calorimeter. The applicability of the ERAS model has been investigated for describing the experimental data as well as literature data of alkanol-ether mixtures containing DBE or dipropyl ether (DPE).  相似文献   

7.
We have made calorimetric measurements of the enthalpy of dissolving solid ferrous chloride in water at 298 K and have derived ΔH° = −19.82 kcal mol−1 for the standard enthalpy of this process. This ΔH° is related by way of some thermodynamic calculations to other properties of iron.  相似文献   

8.
The excess enthalpies, HE, for liquid Freon-22 + N,N-dimethylacetamide mixtures were measured from 263 to 363 K at 5500 kPa using isothermal flow calorimeters with a reproducibility of better than 1%. At all temperatures the mixtures showed negative (exothermic) nonideal behavior of HE. The HE values are essentially invariant with temperature from 263 to 363 K, but HE values become successively more negative for 343, 353, and 363 K. The Redlich-Kister equation was found to give a good fit of the HE data over the entire composition and temperature ranges investigated.  相似文献   

9.
Molar excess enthalpies HmE, isobaric heat capacities CP,mE, volumes VmE and isothermal compressibilities κTE for the 1,3-dioxane(3DX) + cyclohexane mixture were measured at 298.15 K, in order to compare to those of the 1,4-dioxane(4DX) + cyclohexane mixture. HmE is endothermic and the maximum value about 1.5 kJ mol−1 at x ≈ 0.45, and lower than that of the 4DX mixture by about 80 J mol−1. VmE is positive over the whole concentration and the maximum value is about 0.85 cm3 mol−1 at x ≈ 0.45, and lower than that of the 4DX mixture. The above results suggest the energetic unstabilization, resulting in the volume expansion in the mixture. CP,mE shows the characteristic W-shaped concentration dependence, which has maximum at x ≈ 0.45 and two minima at x ≈ 0.1 and 0.9. The maximum CP,mE value for 3DX mixture shifts toward the positive side, compared to that of 4DX mixture. κTE were estimated from speeds of sound, densities, thermal expansion coefficients and isobaric heat capacities of the pure component liquids and the mixtures. The κTE result shows the positive concentration dependence over the whole composition range. The 3DX mixture has the similar thermodynamic properties to the 4DX mixture, despite that 4DX is the nonpolar solvent and 3DX is the dipolar liquid. this means that there exists the local dipolar interaction between 4DX molecules, and the prevalence of “microheterogeneity” in the both mixtures.  相似文献   

10.
The compounds [MBr2(p-clan)2] (where M is Mn(II), Fe(II), Co(II), Ni(II), Cu(II) or Zn(II); p-clan = 4-chloroaniline) were synthesized and characterized by melting points, elemental analysis, thermal analysis and electronic and IR spectroscopy. The enthalpies of solution of the adducts, metal(II) bromides and 4-chloroaniline in methanol, 1.2 M aqueous HCl or 25% (v/v) 1.2 M aqueous HCl in methanol were measures and by using thermochemical cycles, the following thermochemical parameters for the adducts have been determined: the standard enthalpies for the Lewis acid/base reactions (ΔrH°), the standard enthalpies of formation (ΔfH°), the standard enthalpies of decomposition (ΔDH°), the lattice standard enthalpies (ΔMH°) and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase (ΔrH°(g)). The mean bond dissociation enthalpies of the metal(II)-nitrogen coordinated bonds and the enthalpies of adduct formation in the gaseous phase have been estimated.  相似文献   

11.
The heat capacity of copper hydride has been measured in the temperature range 2–60 and 60–250 K using two adiabatic calorimeters. Special procedure for the purification of CuH has been applied and a careful analysis of sample contamination has been performed. The experimental results have been extrapolated up to 300 K due to instability of the copper hydride at room temperature. From the temperature dependence of heat capacity the values of entropy S°(T), thermal part of enthalpy H°(T)−H°(0) and Gibbs function [−(G°(T)−H°(0))] have been calculated assuming S°(0)=0. The standard absolute entropy, standard entropy of formation from the elements and enthalpy of decomposition of copper hydride from the elements have been calculated and found to be 130.8 J K−1 mol−1 (H2), −85.1 J K−1 mol−1 (H2), −55.1 kJ mol−1 (H2), respectively. These new results gave the possibility of discussion on thermodynamic properties of copper hydride. Debye temperature has been for the first time determined experimentally.  相似文献   

12.
The density and kinematic viscosity of the systems methyl butanoate+cyclo-octane and n-heptane+cyclo-octane were determined at four temperatures in the range 283.15–313.15 K over the whole concentration range. The densities and viscosities of the ternary system methyl butanoate+n-heptane+cyclo-octane were determined at 283.15 and 313.15 K. For the binary systems, the dependence of VE on composition and temperature was obtained in order to calculate other mixture properties, such as the isobaric thermal expansion coefficients, the temperature coefficients of the molar excess volume and the pressure coefficients of the molar excess enthalpy. In the case of the system n-heptane+cyclo-octane the values of these properties and have been compared with those predicted using the group-contribution model by Nitta et al. in combination with a parameters set available in the literature. Experimental binary and ternary viscosities were correlated for comparison, by means of several empirical and semi-empirical models. Kinematic viscosities were also used to test the predictive capability of the group-contribution model UNIFAC-VISCO. In addition, several empirical equations for predicting ternary properties from only binary results have also been applied.  相似文献   

13.
《Thermochimica Acta》1991,190(2):319-323
Measurements were made of the dissolution heats of NaBPh4 and Ph4PCl in water-n-propanol mixtures over the whole range of compositions. Assuming the equality of ΔHtr+(Ph4P+) and ΔHtr+(BPh4), the transfer enthalpies of several ions from water to water-n-propanol mixtures at 298.15 K were calculated.  相似文献   

14.
Excess enthalpies, HE, of binary mixtures containing poly(propylene glycols) of different molecular masses + benzyl alcohol, or + m-cresol, or + anisole were determined using a flow microcalorimeter at 308.15 K and at atmospheric pressure. Data was correlated using the Redlich–Kister polynomial. Results were qualitatively discussed in terms of molecular interactions and of the regular solution model.  相似文献   

15.
Microcalorimetric measurements of excess molar enthalpies, at 298.15 K, are reported for the two ternary systems formed by mixing either diisopropyl ether or 2-methyltetrahydrofuran with binary mixtures of cyclohexane and n-heptane. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that useful estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

16.
The effect of temperature on the extraction of FE(III) by dehydrated castor oil fatty acids (DCOFA) has been studied in the temperature range 283–313 K at 1.0M constant ionic strength (NaClO4). The temperature dependence of the conditional constant of extraction is given in the form: ln Kext=31.95 − 12800(1/T). Also, it was found that the average thermodynamic parameters, ΔH°ext, ΔG°ext, and ΔS°ext are 106.5 kJ/mole, 27.3 kJ/mole, and 0.3 kJ. mole−1.K−1, respectively. The extracted species in toluene solution were identified as FeR3.HR and Fe(OH)R2, where HR represents the fatty acid used.  相似文献   

17.
《Thermochimica Acta》1990,160(2):303-306
Enthalpies of solution of alkaline earth metal chlorides have been determined in water and aqueous mixtures of methanol and ethanol, and the enthalpies of transfer obtained. Plots of standard enthalpy of solution ΔHmXXX vs. binary solvent composition are discussed and compared with the corresponding curve for water-methanol solutions of CaCl2.  相似文献   

18.
Methyl tert-butyl ether (MTBE) is recently widely used in the chemical and petrochemical industry as a non-polluting octane booster for gasoline and as an organic solvent. The isobaric or isothermal vapor–liquid equilibria (VLE) were determined directly for MTBE+C1–C4 alcohols. The excess enthalpy (HE) for butane+MTBE or isobutene+MTBE and excess volume (VE) for MTBE+C3–C4 alcohols were also determined. Besides, the infinite dilute activity coefficient, partial molar excess enthalpies and volumes at infinite dilution (γ, HE,∞, VE,∞) were calculated from measured data. Each experimental data were correlated with various gE models or empirical polynomial.  相似文献   

19.
The standard (p0 = 0.1 MPa) molar enthalpies of formation of several crystalline lithium alkoxides, ΔHf0(LiOR, cr), have been determined by reaction-solution calorimetry at 298.15 K. A linear correlation has been found between ΔHf0(LiOR, cr) and ΔHf0(ROH, 1) for R = n-alkyl, enabling the prediction of data for other lithium alkoxides. The deviations from the linear correlation observed for R =iPr and tBu were tentatively explained in terms of the electronegativities of the OR groups. The experimental data were also used to derive the lattice energies and the thermochemical radii of the anions OR. The results were compared with those derived from the enthalpies of formation of the analogous sodium alkoxides, reported in a previous publication.  相似文献   

20.
The enthalpy of formation (ΔHf0), enthalpy of evaporation (ΔHv0) and enthalpy of atomization (ΔHa) of permethylcyclosilazanes (Me2SiNH)n (n = 3, 4) and 1,1,3,3-tetramethyldisilazane (Me2SiH)2NH have been determined. The enthalpies of formation of these compounds were compared with those calculated by the Benson-Buss-Franklin and Tatevskii additive schemes. In higher permethylcyclosilazanes the energy of the endocyclic Si---N bond is 306 ± 2 kJ mol−1 (73 kcal mol−1), that is 12 ± 2 kJ mol−1 (3 kcal mol−1) lower than the energy of the acyclic Si---N bond. The strain energy of the cyclotrisilazane ring is estimated to be 10.5 kJ mol−1 (2.5 kcal mol−1), whereas the energy of the ring Si---N bond is 295 kJ mol−1 (70.5 kcal mol−1).

The thermochemical data for permethylcyclosilazanes were compared with the corresponding values for permethylcyclosiloxanes calculated from the results of previously reported studies.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号