首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ligands (L) bis (2-pyridyl) methane (BPM) and 6-methyl-bis (2-pyridyl)methane (MBPM) form the three complexes CuL2+, CuL, and Cu2L2H with Cu2+. Stability constants are log K1 = 6.23 ± 0.06, log K2 = 4.83 ± 0.01, and log K (Cu2L2H + 2H2+ ? 2 CuL2+) = ?10.99 ± 0.03 for BPM and 4.56 ± 0.02, 2.64 ± 0.02, and ?11.17 ± 0.03 for MBPM, respectively. In the presence of catalytic amounts of Cu2+, the ligands are oxygenated to the corresponding ketones at room temperature and neutral pH. With BPM and 2,4,6-trimethylpyridine (TMP) as the substrate and the buffer base, respectively, the kinetics of the oxygenation can be described by the rate law with k1 = (5.9 ± 0.2) · 10?13 mol l?1 s?1, k2 = (4.0 ± 0.6) · 10?4 mol?1 ls?1, k3 = (1.1 ± 0.1) · 10?12 mol l?1 s?1, and k4 = (9 ± 2) · 10?14 mol l?1 s?1.  相似文献   

2.
The radical cations H3PPH, H3PSH, H3PClH, and HClClH have been studied by ab initio molecular-orbital theory. An increasing tendency to adopt trigonal bipyramidal (TBP) gemoetries is observed for the phosphorus radicals with sulfur and chlorine ligands. The three-electron bond dissociation energies are calculated to be between 7 and 31 kcal mol?1. The dependence of these bond energies on the ionization potentials for the neutral hydrides is illustrated, and the deformation of phosphorus σ* radicals towards TBP structures is discussed.  相似文献   

3.
The kinetics of formation and dissociation of [V(H2O)5NCS]2+ have been studied, as a function of excess metal-ion concentration, temperature, and pressure, by the stopped-flow technique. The thermodynamic stability of the complex was also determined spectrophotometrically. The kinetic and equilibrium data were submitted to a combined analysis. The rate constants and activation parameters for the formation (f) and dissociation (r) of the complex are: k/M ?1 · S?1 = 126.4, k/s?1 = 0.82; ΔH /kJ · mol?1 = 49.1, ΔH/kJ · mol?1 = 60.6; ΔS/ J·K?1·mol?1= ?39.8, ΔSJ·K?1·mol?1 = ?43.4; ΔV/cm3·mol?1 = ?9.4, and ΔV/cm3 · mol?1 =?17.9. The equilibrium constant for the formation of the monoisothiocynato complex is K298/M ?1 = 152.9, and the enthalpy and entropy of reaction are ΔH0/kJ · mol?1 = ? 11.4 and ΔS0/J. K?1mol?1 = +3.6. The reaction volume is ΔV0/cm3· mol?1 = +8.5. The activation parameters for the complex-formation step are similar to those for the water exchange on [V(H2O)6]3+ obtained previously by NMR techniques. The activation volumes for the two processes are consistent with an associative interchange, Ia, mechanism.  相似文献   

4.
Ab initio calculations of potential energy, dipole moment, equilibrium OH distance, force constants, and anharmonic frequencies, and correlations between these quantities, are presented for a water molecule and an OH? ion in a uniform electric field of varying field strength. It is explained why a bound H2O molecule in nature always experiences a frequency downshift with respect to the free molecule, and a bound OH? ion either a downshift or an upshift. The frequency-field variation is well accounted for by the expression ΔνOH ∝ ?E·(dμ/drOH + 1/2 · ?μ/?rOH). A frequency maximum occurs at the field strength where ?μ/?rOH ~ 0. Two cases can be discerned: (1) the frequency maximum falls at a positive field strength when dμ/drOH is negative (this is the situation for OH?), and (2) the maximum frequency falls at a negative field when dμ/drOH is positive (this occurs for water). In general, for an OH bond in a bonding situation where the intermolecular interactions are dominated by electrostatic forces, the nonlinearity of the frequency shift with respect to an applied field is governed by how close to the frequency maximum one is, i.e., by both dμ/drOH and ?μ/?rOH. Correlation curves between the external linear force constant, kext, and rOH,e are closely linear over the whole field range studied here, whereas the frequency vs. rOH,e and force constants vs. rOH,e correlation curves form two approximately linear, parallel branches, corresponding to “before” and “after” the maximum in the frequency vs. field curves. Each branch of the v vs. rOH,e curves has a slope of ~ ?16,000 cm?1/Å. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The kinetics of the bromate ion-iodide ion-L-ascorbic acid clock reaction was investigated as a function of temperature and pressure using stopped-flow techniques. Kinetic results were obtained for the uncatalyzed as well as for the Mo(VI) and V(V) catalyzed reactions. While molybdenum catalyzes the BrO-I? reaction, vanadium catalyzes the direct oxidation of ascorbic acid by bromate ion. The corresponding rate laws and kinetic parameters are as follows. Uncatalyzed reaction: r2 = k2[BrO] [I?][H+]2, k2 = 38.6 ± 2.0 dm9 mol?3 s?1, ΔH? = 41.3 ± 4.2 kJmol?1, ΔS? = ?75.9 ± 11.4 Jmol?1 K?1, ΔV? = ?14.2 ± 2.9 cm3 mol?1. Molybdenum-catalyzed reaction: r2 = k2[BrO] [I?] [H+]2 + kMo[BrO] [I?] [ H+]2[M0(VI)], kMo = (2.9 ± 0.3)106 dm12 mol?4 s?1, ΔH? = 27.2 ± 2.5 kJmol?1, ΔS? = ?30.1 ± 4.5 Jmol?1K?1, ΔV? = 14.2 ± 2.1 cm3 mol?1. Vanadium-catalyzed reaction: r1 = kV[BrO] [V(V)], kV = 9.1 ± 0.6 dm3 mol?1 s?1, ΔH? = 61.4 ± 5.4 kJmol?1, ΔS? = ?20.7 ± 3.1 Jmol?1K?1, ΔV? = 5.2 ± 1.5 cm3 mol?1. On the basis of the results, mechanistic details of the BrO-I? reaction and the catalytic oxidation of ascorbic acid by BrO are elaborated. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Sixteen triethylbenzylammonium chlorometallates [Et3 NCH 2Ph][MCIn]m? (M= transition metal, m= 1–3, n= 3–6) and nine anchored ionic metal complexes [?–CH2PBu3][MCIn]m? derived from ‘polymer-bound tributylmethylphosphonium chloride’ have been prepared. All the complexes were studied as catalysts in the hydrosilylation of phenylacetylene with triethylsilane. The homogeneous RhIII, PtIV, IrIII, CuII, ZnII, FeIII and anchored PtIV, RhIII, OsIV complexes were found to be active in this reaction. The regio- and stereoselectivity of the following catalyst types is determined by the metal atom involved, being a weak function of the chemical environment; neutral chloride (MCln–m); acid (H2MCl6); salt containing the lipophilic organic cation ([Et3NCH2Ph][MCln]m?); polymer-supported metallate anion ([?–CH2PBu3] [MCln]m?).  相似文献   

7.
Existing data on the self-reactions of tertiary peroxy radicals RO2 has been reanalyzed and corrected to deduce Arrhenius parameters for both termination and nontermination paths. For R = t-Butyl, these are logkt(M?1sec?1) = 7.1 - (7.0/θ) and logknt(M?1sec?1) = 9.4 - (9.0/θ), respectively, different from those recommended by other authors. The higher magnitudes observed for termination processes of tertiary peroxy radicals like those of cumyl and 1,1-diphenylethyl have been discussed in terms of a much greater cage recombination of cumyloxy radicals as contrasted with t-butoxy radicals. It is shown that for benzyl peroxy radicals, the R—O bond dissociation energy is sufficiently low (18–20 kcal) that reversible dissociation into R˙ + O2 opens a competing second-order path to fast recombination R˙ + RO → ROOR. This path is probably not important for cumyl peroxy radicals under usual experimental conditions but can become important for 1,1-diphenyl ethyl peroxy radicals at (O2) < 10?3M. At very low RO concentrations (<10?5M), in the absence of added O2, an apparent first-order disappearance of RO can occur reflecting the rate determining breaking of the cumyl—O bond followed by the second step above. The thermochemistry of RO is used to show that the reaction of R2O4 → 2RO + O2 must be concerted and cannot proceed via RO which is too unstable and cannot form even from RO˙ + O2.  相似文献   

8.
Incorporation of the lipophilic Co(III)-cobyrinate octadecyl-cobester 1 and of its ionic aqua-cyano perchlorate derivative 2 into poly(vinyl chloride)/bis(1-butylpentyl) adipate liquid membranes induces a selectivity, measured potentiometrically, of about 103 for SCN? an NO with respect to CI?, but only of about 4 for ClO vs. CI?. This is in contrast to classical anion-exchanger membranes, which exhibit a selectivity sequence ClO > SCN? ? NO > Cl? in accordance with the Hofmeister, series. The Co(III)-corrins 1 and 2, when components in solvent polymeric membranes, undergo exchange of axial ligands an behave as highly selective carriers fof SCN? and NO.  相似文献   

9.
Crystal structures and electrical properties of radical-cation salts of the chiral organic donor TMET (S,S,S,S,-bis-(dimethylethylenedithio)tetrathiafulvalene) are described. Two structural types, 2:1 with octahedral anions Pf, AsF, SbF, I (incommensurate), and 3:2 with tetrahedral anions BF?4, CIO?4, ReO?4 are observed. Resistivity measurements between 2 and 298 K indicate that the 3:2 types are organic metals, while the other compounds are semiconductors. (TMET)3(CIO4)2 is metallic down to about 120 K at ambient pressure and remains metallic down to 2 K at 8 kbar.  相似文献   

10.
The effects of the basis-set size on many-body energy expansion in LiF? clusters are investigated and correlated with previously reported values on LiCl? analogs. Coulomb and non-Coulomb energies in LiF? at different configurations are also examined. Although at the minimal STO -3G basis Vna(3, 4) and Vna(4, 4) nonadditivity terms were the smallest in the D3h configuration, they were the largest at the extended 6-311 ++G basis. V(m, n) terms where m = n ≥ 3 were found to be playing a small role in the chemistry and physics of LiF? clusters compared with V(3, n) terms in LiCl? clusters.  相似文献   

11.
In aqueous acetonitrile (AN), Cu (I) forms the complexes Cu(AN)L+ and CuL with a series of substituted imidazoles (L). Stability constants logK of Cu(AN)+ + L ? Cu(AN)L+ and logβ2 were near 5 and 12, resp., log units for all ligands. The rate of autoxidation is described by ?d[O2]/dt=[CuL]2[O2](ka/(1+kb[CuL]) + (kc[L]+kd)/([CuL] + ke[Cu])), implying competition between one- or two-electron reduction of O2. The value of kc decreases from 5500M ?2S ?1 for unsubstituted imidazole to about 40M ?2S ?1 for 2-methylimidazole or 1,2-dimethyl-imidazole and essentially zero for the corresponding 2-ethyl-derivatives. On the other hand, ka and kb are much less influenced by the nature of the ligands, all values being near 5 · 104M ?2S ?1 and 103M ?1, respectively, for the complexes with the last four bases. Thus rather subtle sterical changes may strongly influence the relative importance of different pathways in the reduction of dioxygen by cuprous complexes.  相似文献   

12.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

13.
Ab initio calculations of potential energy, dipole moment, equilibrium OH distance, force constants, and anharmonic frequencies, and correlation between these quantities, are presented for a water molecule and an OH? ion in a uniform electric field of varying field strength. It is explained why a bound H2O molecule in nature always experiences a frequency downshift with respect to the free molecule, and a bound OH?1 ion, either a downshift or an upshift. The frequency-field variation is well accounted for by the expression ΔνOH α ?E‖ · (d μ/drOH + 1/2 · ?μ/?rOH). A frequency maximum occurs at the field strength where ?μ‖tot/?rOH ~ 0. Two cases can be discerned: (1) the frequency maximum falls at a positive field strength when dμ/drOH is positive (this is the situation for OH?), and (2) the maximum frequency falls at a negative field when dμ/drOH is negative (this occurs for water). In general, for an OH bond in a bonding situation where the intermolecular interactions are dominated by electrostatic forces, the nonlinearity of the frequency shift with respect to an applied field is governed by how close to the frequency maximum one is, i.e., by both dμ/drOH and ?μ/?rOH. Correlation curves between the external linear force constant, kext, and rOH,e are closely linear over the whole field range studied here, whereas the frequency vs. rOH,e and force constants vs. rOH,e correlation curves form two approximately linear, parallel branches, corresponding to “before” and “after” the maximum in the frequency vs. field curves. Each branch of the ν vs. rOH,e curves has a slope of ~ ? 16,000 cm?1/Å. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Preparation and Spectroscopic Characterization of the Cluster Anion [(Mo6Cl )(CF3COO) ]2? On heating of [(Mo6Cl)Cl]2? in dichloromethane with trifluoroacetic acid the new stable cluster anion [(Mo6Cl)(CF3COO)]2? is formed by elimination of HCl. The (Mo6Cl) unit remains unattacked. The 19F nmr spectrum exhibits a downfield shifted singulett as compared to free CF3COO? indicating the equivalence of all trifluoroacetate ligands, which unidentate coordination is deduced from characteristic i. r. frequencies of the carboxyl groups. The most intense i.r. band at 501 cm?1 is assigned to the antisymmetric Mo? Oa vibration, the most intense Raman line at 319 cm?1 to the breathing mode of the Cl cube.  相似文献   

15.
The equivalence of the C(CN)2- and the NCN-groups with oxygen in the series of homologous ions C(CN), N(CN), OCN? and NOC(CN), NO causes us to postulate a more general value of this relation. Arguments for the formulation of a pseudochalkogen series C(CN)2? NCN? O are discussed. Synthesis, structure and reactivity of some dicyanmethanido- and cyanamido-oxoanions RCOY?, CO2Y2?, COY, NOY?, NO2Y?, PO3Y3?, PO2Y and SO2Y2? are described. (Y ? C(CN)2, NCN.) The preparation of some triorganoleadacyles is reported.  相似文献   

16.
The triazenols 4-R1? C6H4? N?N? N(OH)? R2 ( 1 ), oxidized with t-BuO radicals, produced nitroxide radicals R1? C6H4? N(O?)? N?N(R2) +O? ( 5 ). The suggested radical structure was confirmed by 15N-labeling. The reaction of triazenols 1 with PbO2 proceeded under N2 elimination, in which case nitroxides R1? C6H4? N(R2)? O?( 2 ) were observed as the final radical products. The intermediate R1? C6H radicals were identified by spin-trapping.  相似文献   

17.
Aqueous iodination of trans-2-butenoic acid proceeds via hydrolysis of I2 to form HOI and I?, then rapid addition of HOI across the double bond to form the iodohydrin product. In the presence of iodate to keep iodide concentration low, the reaction proceeds at a conveniently measurable rate. The rate for the addition reaction is ?d[C4H6O2]/dt = 5900 [H+][C4H6O2][HOI]M/s at 25.0°C when [IO] = 0.025M and ionic strength = 0.3. The overall rate law in the presence of iodate is where [H+] and [IO] are total concentrations used to prepare the solution.  相似文献   

18.
When the Hammett-Taft equation log (k/ko)=ρq · σ is applied to the solvolysis of the 3-substituted propyl bromides 6a-6i in ethanol/water 4:1 (v/v) log k correlates linearly with σ except in cases where R exerts an anchimeric effect. The reaction constant ρq for 6 is ? 0.12 and is typical for a nucleophilic solvent-assisted ks process at a primary C-atom. The tertiary halides 1 and 3 , however, which react with little or no nucleophilic solvent assistance, i.e. by kc processes, lead to larger ρq values of ?0.71 and ?1.14, respectively. The reaction constant pq is therefore a sensitive gauge for charge development in the transition state for solvolysis of saturated compounds.  相似文献   

19.
We have determined the dynamic dipole (α1), quadrupole (α2), octupole (α3), and dipole–dipole–quadrupole (B) polarizabilities and the second hyperpolarizability tensor (γ) for the helium atom in its lowest triplet state (23S). We have done so for both real and imaginary frequencies: in the former case, for a range of frequencies (ω) between zero and the first electronic-transition frequency, and in the latter case for a 32-point Gauss–Legendre grid running from zero to ?ω = 20 Eh. We have also determined the dispersion-energy coefficients C6, C8, and C10 for the systems H(12S)? He(23S), He(11S)? He(23S), and He(23S)? He(23S) and the C, C, C, C, and C coefficients for the interaction He(23S)? H2(X1∑). Our values of the higher-order multipolar polarizabilities and of γ for the 23S state of helium are, we believe, the first to be published. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Relativistic configuration interaction calculations are carried out to study the electronic structure and spectroscopic properties of InI and InI+. Potential energy curves of the ground and a number of low‐lying states are constructed. Spectroscopic parameters of the bound states of both species are computed and compared with the experimental and other theoretical data. Effects of spin‐orbit coupling on the spectroscopic properties are studied. Because of the presence of the heavy atoms the effect is large. The spin‐orbit splitting of the ground state (X2Π) of InI+ is more than 8350 cm?1. As a result of the strong spin‐orbit interaction between X2Π and A2Σ+ of InI+, the potential energy curve of A2Σ becomes repulsive. Radiative lifetimes for the spin‐forbidden transitions such as A3Π?X1Σ and B3Π1 ?X1Σ of InI and spin‐allowed transitions such as B2Σ+?A2Σ+, C2Π?A2Σ+, and B2Σ+?X2Π are calculated. Vertical and adiabatic ionization energies of InI and the electric dipole moments of both the neutral and ionic species are estimated. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号