首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of the two new phosphoramidites 5 and 8 bearing a carbostyril (=quinolin‐2(1H)‐one) chromophore used as donor entity in our recently developed new FRET (fluorescence‐resonance‐energy transfer) system is described (Schemes 1 and 2) The high stability of the chromophore to basic conditions enables the incorporation of the phosphoramidites directly into DNA during solid‐phase synthesis (Schemes 3 and 4). Since this is also possible for the (bathophenanthroline)ruthenium(II) complex used as acceptor (Scheme 4, Steps d and e), the whole labelling procedure to insert the FRET system into synthetic DNA is straightforward and represents a major improvement to our previous strategy.  相似文献   

2.
Three decades ago, dye-sensitized solar cells (DSSCs) emerged as a method for harnessing the energy of the sun and for converting it into electricity. Since then, a lot of work has been devoted to create better global photovoltaic efficiencies and long term stability. Among photosensitizers for DSSCs, thiocyanate-free ruthenium(II) complexes have gained increasing interest due to their better stability compared to conventional thiocyanate-based complexes, such as benchmark dyes N719 and Z907. In this mini-review, two classes of thiocyanate-free Ru(II) complexes are presented: (a) bis-bipyridyl compounds bearing an ancillary cyclometalating bidentate ligand; (b) bipyridyl compounds bearing non-cyclometalating ancillary ligands. The coverage, mainly from 2014 up to now, is not exhaustive, but illustrates the most recent design strategies and photovoltaic properties of these two families of ruthenium(II) dyes.  相似文献   

3.
The energy and electron transfer processes taking place in binuclear polypyridine complexes of ruthenium and osmium based on the tetrapyrido[3,2-a:2',3'-c:3' ',2' '-h:2' "-3' "-j]phenazine bridging ligand (tpphz) have been investigated by ultrafast absorption spectroscopy. In the binuclear complexes, each chromophore is characterized by two spectrally distinguishable metal-to-ligand charge transfer (MLCT) excited states: MLCT1 (with promoted electron mainly localized on the bpy-like portion of tpphz, higher energy) and MLCT0 (with promoted electron mainly localized on the pyrazine-like portion of tpphz, lower energy). In the homodinuclear complexes Ru(II)-Ru(II) and Os(II)-Os(II), MLCT1 --> MLCT0 relaxation (intraligand electron transfer) is observed, with strongly solvent-dependent kinetics (ca. 10(-10) s in CH2Cl2, ca. 10(-12) s in CH3CN). In the heterodinuclear Ru(II)-Os(II) complex, *Ru(II)-Os(II) --> Ru(II)-Os(II) energy transfer takes place by two different sequences of time-resolved processes, depending on the solvent: (a) in CH2Cl2, ruthenium-to-osmium energy transfer at the MLCT1 level followed by MLCT1 --> MLCT0 relaxation in the osmium chromophore, (b) in CH3CN, MLCT1 --> MLCT0 relaxation in the ruthenium chromophore followed by osmium-to-ruthenium metal-to-metal electron transfer. In the mixed-valence Ru(II)-Os(III) species, the *Ru(II)-Os(III) --> Ru(III)-Os(II) electron transfer quenching is found to proceed by two consecutive steps in CH3CN: intraligand electron transfer followed by ligand-to-metal electron transfer. On a longer time scale, charge recombination leads back to the ground state. Altogether, the results show that the tpphz bridge plays an active mechanistic role in these systems, efficiently mediating the transfer processes with its electronic levels.  相似文献   

4.
Keggin and Dawson-type polyoxometalates (POMs) decorated by organometallic [cyclometalated ruthenium(II) polypyridine complex] or organic (pyrene) chromophores were prepared by postfunctionalization of hybrid disilylated POM platforms. The connection is made in a very efficient and modular way via Sonogashira coupling reactions, which provide a rigid linkage between the POM and the photoactive centers. Electronic properties have been inferred from electrochemical and photophysical studies and reflect poor electronic interactions between both partners. The presence of the POM leads to luminescence quenching of the chromophores, which was attributed to an intramolecular electron transfer from the chromophore to the POM. The rate of this process is much faster in the POM-pyrene than in the POM-Ru system. It depends on the driving force dictated by the redox potentials of both partners but also in the case of the POM-Ru system on the presence of the metallacycle, which acts as a molecular insulator and delays the intramolecular electron transfer. In the POM-Ru system, a comparative study of the luminescence quenching showed that the electron transfer is still more important in the covalently bonded hybrids than in systems where the POM and the ruthenium complexes are assembled via electrostatic interactions.  相似文献   

5.
The synthesis of two series of peptidic chains composed of bis(terpyridine)ruthenium(II) acceptor units and organic chromophores (coumarin, naphthalene, anthracene, fluorene) by stepwise solid‐phase peptide synthesis (SPPS) techniques is described. The first series of dyads comprises directly amide linked chromophores, while the second one possesses a glycine spacer between the two chromophores. All dyads were studied by UV/Vis and NMR spectroscopy, steady‐state luminescence, luminescence decay and electrochemistry, as well as by DFT calculations. The results of these studies indicate weak electronic coupling of the chromophores in the ground state. Absorpion spectra of all dyads are dominated by metal‐to‐ligand charge‐transfer (MLCT) bands around 500 nm. The bichromophoric systems, especially with coumarin as organic chromophore, display additional strong absorptions in the visible spectral region. All complexes are luminescent at room temperature (3MLCT). Efficient quenching of the fluorescence of the organic chromophore by the attached ruthenium complex is observed in all dyads. Excitation spectra indicate energy transfer from the organic dye to the ruthenium chromophore.  相似文献   

6.
Two novel tris(bipyridine)ruthenium(II) complexes bearing two and six beta-cyclodextrin binding sites on their ligands have been synthesised and characterised. Complex 1, bearing two cyclodextrins, adopts a conformation in aqueous solution where parts of the aromatic ligands are self-included into the cyclodextrin moieties. This results in a loss of symmetry of the complex and gives rise to a much more complicated 1H NMR spectrum than expected. Photophysical studies indicate that the appended cyclodextrins protect the luminescent ruthenium core from quenching by oxygen, which results in longer excited state lifetimes and higher emission quantum yields compared with the reference compound, the unsubstituted ruthenium tris(bipyridine). Inclusion of suitable guests such as dialkyl-viologens leads to a quenching of the luminescence of the central unit. In these supramolecular donor-acceptor dyads an efficient photoinduced electron transfer from the excited ruthenium moiety (the donor) to the viologen unit (the acceptor) is observed. The alkyl chain length of the acceptor plays an important role on the binding properties; when it exceeds a certain limit the binding becomes strong enough for electron transfer to occur. Interestingly, a viologen with only one long alkyl tail instead of two shows no efficient quenching; this indicates that cooperative interactions between two cyclodextrins binding one viologen are essential to raise the binding constant of the supramolecular dyad.  相似文献   

7.
Photoinduced charge separation is a fundamental step in photochemical energy conversion. In the design of molecularly based systems for light-to-chemical energy conversion, this step is studied through the construction of two- and three-component systems (dyads and triads) having suitable electron donor and acceptor moieties placed at specific positions on a charge-transfer chromophore. The most extensively studied chromophores in this regard are ruthenium(II) tris(diimine) systems with a common 3MLCT excited state, as well as related ruthenium(II) bis(terpyridyl) systems. This Forum contribution focuses on dyads and triads of an alternative chromophore, namely, platinum(II) di- and triimine systems having acetylide ligands. These d8 chromophores all possess a 3MLCT excited state in which the lowest unoccupied molecular orbital is a pi orbital on the heterocyclic aromatic ligand. The excited-state energies of these Pt(II) chromophores are generally higher than those found for the ruthenium(II) tris(diimine) systems, and the directionality of the charge transfer is more certain. The first platinum diimine bis(arylacetylide) triad, constructed by attaching phenothiazene donors to the arylacetylide ligands and a nitrophenyl acceptor to 5-ethynylphenanthroline of the chromophore, exhibited a charge-separated state of 75-ns duration. The first Pt(tpy)(arylacetylide)+-based triad contains a trimethoxybenzamide donor and a pyridinium acceptor and has been structurally characterized. The triad has an edge-to-edge separation between donor and acceptor fragments of 27.95 Angstroms. However, while quenching of the emission is complete for this system, transient absorption (TA) studies reveal that charge transfer does not move onto the pyridinium acceptor. A new set of triads described in detail here and having the formula [Pt(NO2phtpy)(p-C triple-bond C-C6H4CH2(PTZ-R)](PF6), where NO2phtpy = 4'-{4-[2-(4-nitrophenyl)vinyl]phenyl}-2,2';6',2'-terpyridine and PTZ = phenothiazine with R = H, OMe, possess an unsaturated linkage between the chromophore and a nitrophenyl acceptor. While the parent chromophore [Pt(ttpy)(C triple-bond CC6H5)]PF6 is brightly luminescent in a fluid solution at 298 K, the triads exhibit complete quenching of the emission, as do the related donor-chromophore (D-C) dyads. Electrochemically, the triads and D-C dyads exhibit a quasi-reversible oxidation wave corresponding to the PTZ ligand, while the R = H triad and related C-A dyad display a facile quasi-reversible reduction assignable to the acceptor. TA spectroscopy shows that one of the triads possesses a long-lived charge-separated state of approximately 230 ns.  相似文献   

8.
The synthesis of novel ruthenium(II) bipyridine or terpyridine complexes bearing an increasing number of pyrene or toluyl moieties is described. The ruthenium complexes are constructed in a first step with ligands bearing the required bromine functions, followed in a second step by stepwise grafting of 1-ethynylpyrene or 4-ethynyltoluene promoted by Pd(0). A complex bearing a protected triethylsilylacetylene function was also prepared. In situ deprotection of this function with K2CO3 and cross-coupling with 1-bromopyrene afforded a soluble complex in which two pyrene moieties are linearly linked via ethynyl spacers to one of the bipyridine ligands. These highly coloured complexes exhibit well defined absorption and emission properties in solution at both rt and 77 K.  相似文献   

9.
A series of panchromatic ruthenium sensitizers ( MJ sensitizers) with attached thiophene and phenyl units bearing alkyl chains was synthesized. A new synthetic route was used to examine all possible positions for the alkyl chains. The absorption spectra showed the sum of a ruthenium complex and peripheral organic chromophore units. The hypochromic effect and blueshift of the metal‐to‐ligand charge‐transfer band observed in the modified ruthenium sensitizers were suppressed by changing the positions of the alkyl chains on the attached thiophene ring. Changing only one alkyl chain also influenced the performance of dye‐sensitized solar cells. Ruthenium sensitizer MJ‐10 with bulky substituent harvests visible and near‐infrared light, and solar cells sensitized by MJ‐10 exhibit an efficiency of 9.1 % under 1 sun irradiation.  相似文献   

10.
Utilization of 5′-amino-2,2′-bipyridine-5-carboxylic acid allows molecular design of ruthenium tris(bipyridine)-type complexes bearing two different functional groups. In this study, a novel ruthenium tris(bipyridine) derivative bearing viologen and tyrosine as an electron acceptor and donor, respectively, is synthesized. This synthesis exemplifies the effectiveness of the molecular design for functionalizing ruthenium bipyridine-type complexes. The photophysical properties are discussed in comparison with a reference ruthenium complex which has neither the electron acceptor nor donor.  相似文献   

11.
A homoleptic ethynyl-substituted ruthenium(II)-bisterpyridine complex representing a versatile synthon in supramolecular chemistry was synthesized and analyzed by NMR spectroscopy, mass spectrometry and X-ray diffractometry. Furthermore, its photophysical properties were detailed by UV/Vis absorption, emission and resonance Raman spectroscopy. In order to place the results obtained in the context of the vast family of ruthenium coordination compounds, two structurally related complexes were investigated accordingly. These reference compounds bear either no or an increased chromophore in the 4′-position. The spectroscopic investigations reveal a systematic bathochromic shift of the absorption and emission maximum upon increasing chromophore size. This bathochromic shift of the steady state spectra occurs hand in hand with increasing resonance Raman intensities upon excitation of the metal-to-ligand charge-transfer transition. The latter feature is accompanied by an increased excitation delocalization over the chromophore in the 4′-position of the terpyridine. Thus, the results presented allow for a detailed investigation of the electronic effects of the ethynyl substituent on the metal-to-ligand charge-transfer states in the synthon for click reactions leading to coordination polymers.   相似文献   

12.
A new copolymer (RuB-PSS) of ruthenium(II)bis-(2,2'-bipyridine)(4-vinyl 2,2'-bipyridine) and styrene sulfonate was prepared which tethers the ruthenium chromophore directly to the polymer backbone. The photophysical properties of the copolymer, and its luminescence quenching by viologens, were compared with those of ruthenium(II)tris-bipyridine, [Ru(bpy)(3)](2+), bound non-covalently to polystyrenesulfonate (PSS) via hydrophobic and electrostatic interactions. Enhancement of ruthenium polypyridyl complex luminescence in both systems is due to decreased rates of non-radiative decay when removed from bulk water as well as reduced oxygen quenching. Molecular dynamics simulations show an open PSS chain conformation with induction of local curvature around the ruthenium centres. Hence, the complexes remain exposed to water, albeit less so than in bulk solution, as evidenced by low enhancement of bound [Ru(phen)(2)dppz](2+) emission. Quenching by O(2) is hindered for both systems due to combined polarity, ionic strength, and viscosimetric effects that influence local concentrations and diffusion of reactants. Electron transfer quenching of the Ru centre by zwitterionic propyl viologen sulfonate (PVS(0)) and cationic methyl viologen (MV(2+)) is enhanced for [Ru(bpy)(3)](2+)/PSS, but retarded for RuB-PSS, despite the attraction of the quenchers for PSS. PSS binding hinders separation of the electron transfer products relative to aqueous solution, excepting an increase for RuB-PSS/PVS(0). We conclude that anionic hydrophobic polymers such as PSS can differentially influence forward- and reverse- electron transfer reactions depending on the charge and hydrophobicity of the reactants. In the context of small molecule binding, we find that PSS provides a tenable model for DNA.  相似文献   

13.
The synthesis of a new, robust fluorescence‐resonance‐energy‐transfer (FRET) system is described. Its donor chromophore is derived from an N‐allyl‐substituted quinolinone attached to 4‐bromophenylalanine via Heck cross‐coupling. The resulting Fmoc‐protected derivative 11 was used as building block in solid‐phase peptide synthesis (SPPS). As FRET acceptor, a sulfonylated ruthenium(II)–bathophenanthroline complex with a peripheral COOH function was prepared for covalent attachment to target molecules. The UV/VIS absorption and emission spectra of peptides bearing only the donor (D) or acceptor (A) dye showed a good overlap of the emission band of the donor with the absorption band of the acceptor. The fluorescence spectra of a peptide bearing both dyes revealed an additional emission after excitation of the donor, which is due to indirect excitation of the acceptor via FRET. The long fluorescence lifetime of the RuII complex (0.53 μs) makes it well‐suited for time‐resolved measurements. As a first application of this new FRET system, the peptide 18 , with the recognition sequence for the protease thrombin, flanked by the two dyes, was synthesized and successfully cleaved by the enzyme. The change in the ratio of the fluorescence intensities could be determined.  相似文献   

14.
The photoelectrochemical properties of single-component and heterostructured layer-by-layer deposited films bearing tris(2,2'-bipyridine)ruthenium(II) (Ru) moieties were investigated by photocurrent measurements in solutions in the presence of sacrificial reagents. The photocurrent increased with an increase in the thickness of the films and then had a maximum at a thickness of 10 nm. This increase demonstrates a light-harvesting effect based on excitation energy migration among the Ru moieties to the film/electrolyte interface. A cathodic photocurrent was observed for a heterostructured film where bilayers bearing ferrocene (Fc) moieties and bilayers bearing Ru moieties were deposited on an indium tin oxide (ITO) substrate in the order (ITO/Fc/Ru). On the other hand, an anodic photocurrent was observed for the reverse order film (ITO/Ru/Fc). These results show that the direction of the photocurrent is determined by the gradient of the redox potentials formed in the heterostructured films. The internal quantum efficiency for the ITO/Ru/Fc film was twice that for the single-component film (ITO/Ru). This enhancement of the quantum efficiency is due to suppression of charge recombination by successive electron transfers in the heterostructured film.  相似文献   

15.
A new series of multicomponent ZnPc-Ru(bpy)(3) systems, 1a-c, consisting of a zinc-phthalocyanine linked through conjugated and/or nonconjugated connections to a ruthenium(II) tris(bipyridine) complex, has been synthesized. The ruthenium complexes 1a-c were prepared from phthalocyanines 2a-c, bearing a 4-substituted-2,2'-bipyridine ligand by treatment with [Ru(bpy)2Cl2].2H2O. Different synthetic strategies have been devised to prepare the corresponding dyad precursors (2a-c). Compound 2a, for example, with an ethenyl bridge, was synthesized by statistical condensation of 4-tert-butylphthalonitrile and 5-[(E)-2-(3,4-dicyanophenyl)ethenyl]-2,2'-bipyridine (3) in the presence of zinc chloride. Compounds 2b and 2c, having, respectively, an amide or an ethynyl bridge, were prepared following a different synthetic approach. The method involves the coupling of an appropriate 5-substituted-2,2'-bipyridine to an unsymmetrical phthalocyanine suitably functionalized with an amino (4) or an ethynyl group (5). The photophysical properties of the dyads that are ZnPc-Ru(bpy)3 1a-c and related model compounds have been determined by a variety of steady-state (i.e., fluorescence) and time-resolved methods (i.e., fluorescence and transient absorption). Clearly, intramolecular electronic interactions between the two subunits dominate the photophysical events following the initial excitation of either chromophore. These intramolecular interactions lead, in the case of photoexcited ZnPc, to faster intersystem crossing kinetics compared to a ZnPc reference, while photoexcited [Ru(bpy)3]2+) undergoes a rapid and efficient transduction of triplet excited-state energy to the Pc.  相似文献   

16.
Photorefractive (PR) polymer composites based on polymers with a high glass transition temperature in which the random distribution of a photosensitizer and a nonlinear optical chromophore as dopants is “frozen” were designed. In the case of the random distribution of chromophores, only the third-order electric susceptibility has a nonzero value. Therefore, nanosized structures having high third-order polarizability due to an extended conjugated-bond system (or cooperative electronic excitation) were used as nonlinear chromophores. Good PR characteristics are displayed by polymeric composites containing nanosized structures, such as cyanine dye J aggregates, supramolecular assemblies of ruthenium(II) complexes, and single-wall carbon nanotubes. The use of extended nanosized chromophores as simultaneous spectral sensitizers allowed polymer composites with PR sensitivity in the near IR region at 1064 and 1550 nm to be designed.  相似文献   

17.
p-Phenylenediamine bearing terminal bipyridyl moieties was synthesized by palladium-catalyzed amination. The corresponding ruthenium(II) complex was formed and characterized, providing a redox-switchable photoinduced electron-transfer system.  相似文献   

18.
The synthesis of new ruthenium(II) terpyridine bipyridine complexes bearing a phosphorus(III) ligand is presented. The steric and electronic properties of the phosphorus ligand were varied using aminophosphines, alkyl and aryl phosphites and the bulky tri(isopropyl)phosphine. All complexes were characterized by multi-nuclear NMR spectroscopy, mass spectrometry and X-ray diffraction analysis. The electronic properties of the complexes were probed by cyclic voltammetry, absorption and luminescence spectroscopy. The complexes do not show luminescence at room temperature, whereas at 77 K in an alcoholic matrix, emission is observed in the range 600-650 nm with lifetimes of 3.5-5.5 micros, originating from 3MLCT states. The MLCT transition spans over 65 nm, which corresponds to a variation of 0.4 eV in the HOMO-LUMO gap. The oxidation potential of the ruthenium varies over a broad range of 290 mV, from +1.32 V vs. SCE with L = PiPr3 to +1.61 V vs. SCE with L = P(OPh)3. This range is unprecedented upon the variation of a single monodentate ligand coordinated by the same heteroatom in the same oxidation and charge states. This work underlines the specific capacity of phosphorus in bringing up a large variety of electronic properties by changing its substituents.  相似文献   

19.
Two ruthenium(III) complexes bearing the thiazole ligand, namely, thiazolium (bisthiazole) tetrachlororuthenate (I, TzICR) and thiazolium (thiazole, DMSO) tetrachlororuthenate (II, TzNAMI) were prepared and characterized. The crystal structures of both complexes were solved by X-ray diffraction methods and found to match closely those of the corresponding imidazole complexes. The behavior in aqueous solution of bothTzICR and TzNAMI was analyzed spectroscopically. The time-dependent spectrophotometric profiles resemble closely those of the related ICR and NAMI-A anticancer compounds, respectively. It is observed that replacement of imidazole with thiazole, a less basic ligand, produces a significant decrease of the ligand exchange rates in the case of the NAMI-like compound. The main electrochemical features of these ruthenium(III) thiazole complexes were determined and compared to those of ICR and NAMI-A. Moreover, some preliminary data were obtained on their biological properties. Notably, both complexes exhibit higher reactivity toward serum albumin than toward calf thymus DNA; cytotoxicity is negligible in line with expectations. A more extensive characterization of the pharmacological properties in vivo is presently in progress.  相似文献   

20.
Odobel F  Zabri H 《Inorganic chemistry》2005,44(16):5600-5611
This paper describes the synthesis of a new series of molecules composed of a ruthenium cation liganded by a chloro or a thiocyanato, a 4,4'-(diethoxycarbonyl)-2,2'-bipyridine, and a 2,2':6',2' '-terpyridine substituted in its 4' position by a difluoroborazaindacene or a zinc phthalocyanine. A set of conditions are reported to conveniently synthesize these dyads by a Stille cross-coupling reaction between the trimethyltin derivative of the organic chromophore and the corresponding ruthenium complex with 4'-bromo-2,2':6',2' '-terpyridine and 4,4'-(diethoxycarbonyl)-2,2'-bipyridine. The dyads were studied by UV-visible absorption spectroscopy, steady-state fluorescence, and electrochemistry. The results of these studies indicate strong electronic coupling between the zinc phthalocyanine unit and the ruthenium complex but weakly electronically coupled systems in the case of dyads containing a difluoroborazaindacene unit. The new bichromophoric systems display strong absorbance in the visible spectrum. An efficient quenching of the fluorescence of the organic chromophore by the nearby ruthenium complex was also observed in all of the dyads. In dyads connected to the borazaindacene, excitation spectra indicate efficient photoinduced energy transfer from the borazaindacene to the ruthenium complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号