首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The linear Schrödinger equation is generalized into non-linear equation based on the Gauss' principle of least squares. The weight function is assigned in such a way that it might be interpreted as occupation number density of hidden particles that obey the Fermi–Dirac stastistics. It is shown that the motion of a free particle, according to the so generalized non-linear equation, is described by a well behaved nondeforming wave packet moving with a constant velocity, in contrast to the always deforming wave packet according to the linear Schrödinger equation.  相似文献   

2.
We present a method by which one-dimensional nonlinear soliton and kink Schrödinger equations can be solved in closed form. The hermitean nonlinear soliton operator may contain up to second derivatives of the wave function and the vanishing condition must hold. The method is applied to solve known nonlinear Schrödinger equations for one-soliton and one-kink solutions and, by inverting the procedure, to derive new operators with wave packet solutions of algebraic and arbitrary shapes. One of them is equivalent to the Derivative Nonlinear Schrödinger equation.  相似文献   

3.
The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.  相似文献   

4.
5.
6.
A Darboux transformation of the generalized derivative nonlinear Schrodinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schrodinger equation are explicitly given.  相似文献   

7.
Chi-Feng Chen  Sien Chi 《Optik》2006,117(10):489-491
The wave equation of TM polarized subwavelength beam propagations in a nonlinear planar waveguide is derived beyond the paraxial approximation. This modified equation contains more higher-order linear and nonlinear terms than the nonlinear Schrödinger equation. The propagation of fundamental subwavelength spatial solitons is numerically studied. It is shown that the effect of the higher nonlinear terms is significant. That is, for the propagation of narrower beam the modified nonlinear Schrödinger equation is more suitable than the nonlinear Schrödinger equation.  相似文献   

8.
Bessel solitary wave solutions to a two-dimensional strongly nonlocal nonlinear Schrödinger equation with distributed coefficients are obtained. Bessel solitary wave solutions have unique characteristics compared with Gaussian solitary wave solutions, Laguerre-Gaussian solitary wave solutions, and Hermite-Gaussian solitary wave solutions. The generalized two-dimensional nonlocal nonlinear Schrödinger equation with distributed coefficients is investigated for the first time to our knowledge.  相似文献   

9.
A theoretical quantum neural network model is proposed using a nonlinear Schrödinger wave equation. The model proposes that there exists a nonlinear Schrödinger wave equation that mediates the collective response of a neural lattice. The model is used to explain eye movements when tracking moving targets. Using a recurrent quantum neural network(RQNN) while simulating the eye tracking model, two very interesting phenomena are observed. First, as eye sensor data is processed in a classical neural network, a wave packet is triggered in the quantum neural network.This wave packet moves like a particle. Second, when the eye tracks a fixed target, this wave packet moves not in a continuous but rather in a discrete mode. This result reminds one of the saccadic movements of the eye consisting of ‘jumps’ and ‘rests’. However, such a saccadic movement is intertwined with smooth pursuit movements when the eye has to track a dynamic trajectory. In a sense, this is the first theoretical model explaining the experimental observation reported concerning eye movements in a static scene situation. The resulting prediction is found to be very precise and efficient in comparison to classical objective modeling schemes such as the Kalman filter.  相似文献   

10.
A Gaussian type spin-polarized electronic wave packet is constructed to investigate the spin transport behaviour in an infinite two-dimensional electron gas system with Rashba spin--orbit (SO) interaction by solving the Schrödinger equation exactly. In the presence of Rashba SO interaction, the spin-dependent force induces a momentum dependent splitting of the two spin directions, the average spin current indicates the corresponding spin accumulation clearly. Furthermore, the coherence of the injected spin-polarized wave packet, as well as the transverse force, decays during the motion in the Rashba SO regime.  相似文献   

11.
A generalized Hamilton-Jacobi representation describes microstates of the Schrödinger wave function for bound states. At the very points that boundary values are applied to the bound state Schrödinger wave function, the generalized Hamilton-Jacobi equation for quantum mechanics exhibits a nodal singularity. For initial value problems, the two representations are equivalent.  相似文献   

12.
We construct the d-dimensional “half” Schrödinger equation, which is a kind of the root of the Schrödinger equation, from the (d+1)-dimensional free Dirac equation. The solution of the “half” Schrödinger equation also satisfies the usual free Schrödinger equation. We also find that the explicit transformation laws of the Schrödinger and the half Schrödinger fields under the Schrödinger symmetry transformation are derived by starting from the Klein-Gordon equation and the Dirac equation in d+1 dimensions. We derive the 3- and 4-dimensional super-Schrödinger algebra from the superconformal algebra in 4 and 5 dimensions. The algebra is realized by introducing two complex scalar and one (complex) spinor fields and the explicit transformation properties have been found.  相似文献   

13.
The paraxial wave equation is a reduced form of the Helmholtz equation. Its solutions can be directly obtained from the solutions of the Helmholtz equation by using the method of complex point source. We applied the same logic to quantum mechanics, because the Schrödinger equation is parabolic in nature as the paraxial wave equation. We defined a differential equation, which is analogous to the Helmholtz equation for quantum mechanics and derived the solutions of the Schrödinger equation by taking into account the solutions of this equation with the method of complex point source. The method is applied to the problem of diffraction of matter waves by a shutter.  相似文献   

14.
The Fokker–Planck equation associated with the two-dimensional stationary Schrödinger equation has the conservation law form that yields a pair of potential equations. The special form of Darboux transformation of the potential equations system is considered. As the potential variable is a nonlocal variable for the Schrödinger equation that provides the nonlocal Darboux transformation for the Schrödinger equation. This nonlocal transformation is applied for obtaining of the exactly solvable two-dimensional stationary Schrödinger equations. The examples of exactly solvable two-dimensional stationary Schrödinger operators with smooth potentials decaying at infinity are obtained.  相似文献   

15.
A logarithmic nonlinear term is introduced in the Schrödinger wave equation, and a physical justification and interpretation are provided within the context of information theory and thermodynamics. From the resulting nonlinear Schrödinger equation for a system at absolute temperatureT>0, the energy equivalence,kT 1n 2, of a bit of information is derived.  相似文献   

16.
In this work, we use linear invariants and the dynamical invariant method to obtain exact solutions of the Schrödinger equation for the generalized time-dependent forced harmonic oscillator in terms of solutions of a second order ordinary differential equation that describes the amplitude of the classical unforced damped oscillator. In addition, we construct Gaussian wave packet solutions and calculate the fluctuations in coordinate and momentum as well as the quantum correlations between coordinate and momentum. It is shown that the width of the Gaussian packet, fluctuations and correlations do not depend on the external force. As a particular case, we consider the forced Caldirola-Kanai oscillator.  相似文献   

17.
A generalized Darboux transformation for the coupled cubic–quintic nonlinear Schrödinger equation is constructed by the Darboux matrix method. As applications, the Nth-order rogue wave solutions of the coupled cubic–quintic nonlinear Schrödinger equation have been obtained. In particular, the dynamics of the general first- and second-order rogue waves are discussed and illustrated through some figures.  相似文献   

18.
Within the framework of the effective mass approximation, coherent oscillations of a photoexcited electron wave packet in an asymmetric coupled quantum well structure have been studied using a time-dependent Schrödinger equation. In the method of calculation, the continuity of the current across a semiconductor heterojunction is considered. The amplitude and period of the electronic is obtained and in the case of high bias, it is found the existence of electric field-induced tunelling to semiconductor bulk.  相似文献   

19.
The problem of separation of variables in the stationary Schrödinger equation is considered for a charge moving in an external electromagnetic field. On the basis of the definition formulated, necessary and sufficient conditions are found for separation of variables in equations of elliptic type to which the stationary Schrödinger equation belongs. Application of general theorems made it possible to enumerate all types of electromagnetic fields and systems of coordinates in which separation of variables in the stationary Schrödinger equation is possible. Systems of ordinary differential equations which the wave function in the separated variables satisfies are written down to explicit form.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 45–50, August, 1972.  相似文献   

20.
There are a lot of difficulties and troubles in quantum mechanics, when the linear Schrödinger equation is used to describe microscopic particles. Thus, we here replace it by a nonlinear Schrödinger equation to investigate the properties and rule of microscopic particles. In such a case we find that the motion of microscopic particle satisfies classical rule and obeys the Hamiltonian principle, Lagrangian and Hamilton equations. We verify further the correctness of these conclusions by the results of nonlinear Schrödinger equation under actions of different externally applied potential. From these studies, we see clearly that rules and features of motion of microscopic particle described by nonlinear Schrödinger equation are greatly different from those in the linear Schrödinger equation, they have many classical properties, which are consistent with concept of corpuscles. Thus, we should use the nonlinear Schrödinger equation to describe microscopic particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号