首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The electronic structure of HOCN, HSCN, HNCO, and HNCS molecules and [OCN]? and [SCN]? anions has been studied by ab initio calculations at HF/6-31G(d), HF/6-31G(d, p), MP2/6-31G(d)//HF/6-31G(d), and MP2/6-31G(d, p)//HF/6-31G(d, p) levels of theory. The HNCO and HNCS molecules are shown to have higher thermodynamic stability than HOCN and HSCN, respectively. The protolyte strength series are substantiated: HSCN > HOCN, HNCS > HNCO, HOCN > HNCO, HSCN > HNCS. Computations including electron correlation [MP2/6-31G(d)//HF/6-31G(d) and MP2/6-31G(d, p)//HF/6-31G (d, p)] reproduce the general sequence of proton-donor properties: HSCN > HOCN > HNCS > HNCO, which coincides with the hydrophobicity series for the compounds. The relative proton-donor capacity of these acids in water solutions is generally governed by the electronic structure and by the size of their molecules and [OCN]? and [SCN]? anions, but not by medium effects.  相似文献   

2.
This work is devoted to theoretical study on molecular structure of protopine. The equilibrium geometry, harmonic vibrational frequencies and infrared intensities were calculated by ab initio Hartree-Fock and density functional B3LYP methods with the 6-31G(d) basis set and were interpreted in terms of potential energy distribution (PED) analysis. The internal coordinates were optimized repeatedly for many times to maximize the PED contributions. A detailed interpretation of the infrared spectra of protopine is reported. The calculations are in agreement with experiment. The thermodynamic functions of the title compound were also performed at HF/6-31G(d) and B3LYP/6-31G(d) level of theory. The FT-IR spectra of protopine were recorded in solid phase.  相似文献   

3.
The RHF/6-311G*(3d), RHF/6-311++G**(3df, 3p) and MP2/6-311G*(3d) ab initio methods were used to calculate the equilibrium structure of the products of the ion-molecular reaction of tritium ion transfer from HeT+ to cyclopentane and cyclohexane. Similar reactions with cyclopentanol and cyclopentanone were calculated at the RHF/6-311G*(3d) level. The interaction of HeT+ with cycloalkanes was found to produce onium ions with cyclic structures, in which the tritium atom held neighboring methylene groups together. With the alcohol and ketone, not only cyclic but also stabler linear cations could be formed, and the addition of the tritium ion directly to the oxygen atom was possible. The suggestion was made that the chain of tritium ion transfer reactions was the mechanism of the accumulation of tritium by hydrocarbon oxidation products when T2 was dissolved in mineral oils.  相似文献   

4.
In this work, the molecular geometry of heptachlor is investigated using ab initio HF, DFT, LDA, and GGA methods. The natural bond orbital (NBO) analysis is performed at the B3LYP/6-311++G(d,p) level of theory. The first order hyperpolarizability βtotal, the mean polarizability Δα, the anisotropy of the polarizability Δα, and the dipole moment μ, are calculated by B3LYP/6-311++G(d,p) and HF/6- 311++G(d,p) methods. The first order hyperpolarizability (βtotal) is calculated based on the finite field approach. UV spectral parameters along with HOMO, LUMO energies for heptachlor are determined in vacuum and the solvent phase using HF, DFT, and TD-DFT/B3LYP methods implemented with the 6-311++G(d,p) basis set. Atomic charges and electron density of heptachlor in vacuum and ethanol are calculated using DFT/B3LYP and TD-DFT/B3LYP methods and the 6-311++G(d,p) basis set. In addition, after the frontier molecular orbitals (FMOs), the molecular electrostatic potential (MEP), the electrostatic potential (ESP), the electron density (ED), and the solvent accessible surface of heptachlor are visualized as a results of the B3LYP/6-311++G(d,p) calculation. Densities of states (DOS), the external electric field (EF) effect on the HOMO-LUMO gap, and the dipole moment are investigated by LDA and GGA methods.  相似文献   

5.
Thermodynamic parameters of electrophilic substitution reactions of 1H-tetrazole and 1H-1, 2, 4-triazole proceeding by the addition–elimination and elimination–addition mechanisms were calculated by the DFT/B3LYP/6-31G(2df, p) method using proton as model electrophile and compared. The results obtained substantiate that the elimination–addition mechanism may not involve preliminary formation of N-protonated azolium salts, as was shown earlier in our DFT/B3LYP/6-31G(d, p) calculations.  相似文献   

6.
The titled molecule 4-[3-(2,5-dimethylphenyl)-3-methylcyclobutyl]-N-methylthiazol-2-amine (C17H22N2S) is synthesized and characterized by 1H NMR, 13C NMR, IR, and X-ray single crystal determination. The compound crystallizes in the monoclinic space group P21/c with a = 6.3972(4) Å, b = 9.4988(6) Å, c = 26.016(2) Å and β = 93.496(7)°. In addition to the molecular geometry from the X-ray determination, vibrational frequencies and gauge, including the atomic orbital (GIAO), 1H and 13C NMR chemical shift values of the titled compound in the ground state are calculated using the density functional (B3LYP) method with 6-31G(d), 6-31++G(d,p) and 6-311+G(2d,p) basis sets. The calculated results show that the optimized geometries can well reproduce the crystal structure. Moreover, the theoretical vibrational frequencies and chemical shift values show good agreement with the experimental values. The predicted nonlinear optical properties of the titled compound are greater than those of urea. DFT calculations of the molecular electrostatic potentials and frontier molecular orbitals of the titled compound are carried out at the B3LYP/6-31G(d) level of theory.  相似文献   

7.
Extraction complexes of Eu(III) and Am(III) with two 2,6-dicarboxypyridine diamide-type ligands L–A and L–B (Fig. 1) are studied by density functional theory (DFT). At both B3LYP/6-31G(d)/RECP and MP2/6-31G(d)/RECP levels of theory, the geometrical optimizations of the structures of the complexes can achieve the same accuracy and obtain the same geometrical configuration. At the B3LYP/6-311G(d,p)/RECP level of theory Eu3+ and Am3+ prefer to form [ML]3+ complexes under the solvation conditions, and the Am(III) complexes with L–A are more stable than the corresponding Eu(III) complexes. In the system with the ligand L–B, both [ML]3+ and [ML(NO3)3] species are very unstable.  相似文献   

8.
Gas-phase electron diffractometry was used to study the molecular structure of N,N′-ethylenebis(salicylaldiminato)nickel(II), NiO2N2C16H14, [hereinafter Ni(salen)] at 583(5) K. The molecule has C 2 symmetry with a practically planar structure of the NiN2O2 coordination unit and with internuclear distances r α (Ni-O) = 1.882(21) Å and r α (Ni-N) = 1.889(22) Å. The results of B3LYP/CEP-31G molecular structure calculations are in good agreement with experimental data, whereas the RHF/CEP-31G method significantly overestimates the Ni-N internuclear distance and gives worse results for other structural parameters. According to 3LYP/CEP-31G calculations, the 1 A low-spin state is 28 kJ/mole lower in energy than the 3 B high-spin state.  相似文献   

9.
The mechanism of complexation of the protonated lincomycin molecule with para-substituted nitrobenzenes in the gas phase is analyzed by quantum chemical methods. The regioselectivity of lincomycin protonation is treated in a B3LYP/6-31G(d′, p) approximation; the geometrical structure and conformation of the molecule are analyzed. The lincomycin molecule is protonated at the nitrogen atom of the pyrrolidine cycle. In stable conformers, a pseudovoid is formed and stabilized by intramolecular hydrogen bonding. The cross section of the pseudovoid (1.77–2.62 Å) is too small for the protonated lincomycin molecule to participate in host guest complexation with organic compounds. According to B3LYP/6-31G(d′, p) calculations, complexation of the protonated lincomycin molecule with nitrobenzenes occurs through hydrogen bonding.  相似文献   

10.
Quantum-chemical calculations of the systems SiCl4←OP[N(CH3)2]3 and SiCl4←2OP[N(CH3)2]3 with complete optimization of their geometry at various Si←O distances were performed by the RHF/6-31G(d) method. The first system was also calculated by the MP2/6-31G(d) method. The calculations of the systems with the complete geometry optimization resulted in trigonal-bipyramidal and trans-octahedral structures, respectively, having energy minima. When the components of the latter system approach each other, first their mutual polarization occurs, and then it is accompanied by electron density transfer from the H and P atoms of the electron-donor molecules to the Cl atoms of the acceptor. The results of the calculation of the trans-octahedral complex agree with the experimental 35Cl NQR data. The electron density of Cl atoms increases upon complex formation, mainly due to an increase in their p σ electron density.  相似文献   

11.
Quantum chemical calculations (DFT/B3LYP/6-31G(d)) considering specific solvation effects were used to compare the thermodynamic parameters of electrophilic substitution reactions (with the hydroxonium ion as a model electrophile) in 1H-tetrazole according to the addition—elimination and elimination—addition schemes. The latter scheme can proceed without preliminary formation of N-protonated azolium salts, as demonstrated earlier by the DFT/ B3LYP/6-31G(d,p) and DFT/B3LYP/6-31G(2df,p) calculations considering the solvation effects in aqueous solution in terms of the polarizable continuum model (PCM) with a proton as a model electrophile.  相似文献   

12.
The thioketene molecule, as well as its isomer and dimer molecules, were calculated by the HF, MP2, and DFT (B3LYP) ab initio methods. The 6-31G (d) and 6-311G (2d, p) basis sets were used. The sequence of stable isomers is refined, and vibrational spectra are calculated for three most stable structures. The assignment of some absorption bands is changed. The most stable dimers and trimers of thioketene are calculated.  相似文献   

13.
Sideridiol (ent-7α,18β-dihydroxykaur-15-ene) one of the ent-kaurene diterpenoid, is isolated from the genus Sideritis L. belongs to the family of Lamiaceae. The vibrational frequencies of sideridiol in the ground state have been calculated using the Density Functional Theory (DFT) method with the 6-31G(d) and 6 31+G(d,p) basis sets. The calculated vibrational frequencies have been compared with that of obtained experimental IR spectrum.  相似文献   

14.
Structures and energy characteristics of clusters composed of monoethanolamine molecules are analyzed using the results of quantum chemical calculations carried out at the density functional level (DFT-B3LYP/6-31G(d,p)) and in the second order of the Møller—Plesset perturbation theory (MP2/6-31G(d, p)). Similar structural motives of hydrogen-bond networks are found in clusters that correspond to the gas-phase aggregation of initially independent molecules and the detachment of thermally distorted crystal lattice fragments. The energies of different hydrogen bonds are compared, and structural motives atypical of crystalline monoethanolamine are found. The studied clusters are shown to be prototypes of the inherent structural fragments of liquid monoethanolamine.  相似文献   

15.
The geometric, charge, and electronic characteristics of 7-substituted pyrido[1,2-a]benzimidazoles and their cations were calculated using the DFT method with the B3LYP functional in the 6-31G** basis set. High regioselectivity of the reactions between the condensed imidazole derivatives and electrophilic agents was explained by the results of quantum chemical simulation. It was concluded that the S EAr reaction was orbitally controlled. According to Fukuís concept, the reaction center of the electrophilic attack was the C(8) atom of the heterocyclic system, which agreed well with the experimental data.  相似文献   

16.
Thermodynamic parameters of the addition–elimination and elimination–addition electrophilic substitution reactions of 1H-tetrazole and 1,2,4-1H-triazole obtained from DFT B3LYP/ 6-31G(d,p) quantum chemical calculations with proton as model electrophile are compared. According to calculations, the elimination–addition reactions can proceed without preliminary formation of N-protonated azolium salts.  相似文献   

17.
Gas-phase electron diffraction and HF/6-31G*, HF/6-31G**, and B3LYP/6-31G* ab initio calculations were used to find that in the gas phase at 242°C the calix[4]arene [-(C6H3OH)-CH2-]4 molecule possesses a C4 conformation. Geometric parameters of the molecule were determined, and the energies of C-H?O hydrogen bonds (7.3 kcal mol?1) were estimated by the AM1 method.  相似文献   

18.
Thermodynamic characteristics of electrophilic substitution reactions of 1H-tetrazole and 2H-tetrazole proceeding by the elimination—addition scheme with F+, Cl+, and Br+ as model cations were compared using the results of DFT/B3LYP/6-31G(d,p) quantum chemical calculations carried out with inclusion of specific solvation effects. Possible reasons for lower reactivity (based on the results of calculations) of 2H-tetrazole compared to that of 1H-isomer are discussed.  相似文献   

19.
Interaction between pyrrole and its 2-vinyl, 2-azo, and 2-phenylazo derivatives with acetylene in the gas phase and DMSO was studied using the MP2/6-311++G**//MP2/6-31G* ab initio approach and including the solvation effects within the framework of the continuum model. Possible reasons are considered for the hindered character of direct vinylation of azopyrroles with acetylene in superbasic media. The introduction of the azo group in the 2 position of the pyrrole ring leads to the increased stability of the pyrrole anion and increased acidity from pK a = 22.1 for pyrrole and pK a = 20.5 for vinylpyrrole to pK a = 16.6 and 16.4 for 2-azopyrrole and 2-phenylazopyrrole, respectively. The binding energy between the pyrrole anion and the acetylene molecule decreases concurrently. The heat of formation of the pyrrole anion adducts with acetylene changes from ΔH = 4.8 kcal/mol for pyrrole to ΔH = 22.4 kcal/mol for 2-phenylazopyrrole. For all anion adducts under study, preferable isomers are Z isomers formed by the interaction of pyrrole anions with the cis-distorted acetylene molecule, but the formation of the E isomers corresponds to a lower activation barrier, which explains known Z stereoselectivity of the nucleophilic addition to monosubstituted acetylenes. When an azo group is introduced, the reaction becomes more endothermal, and the energy barriers to the formation of both Z and E isomers increase. Among other reasons for lowering of the activity of 2-arylazopyrroles during vinylation we consider possible reaction of acetylene addition at the most remote nitrogen atom of the azo group and participation of the anion center in cation chelation (K+ in the calculation).  相似文献   

20.
Following our previous work, we synthesized N-(7-methyl-5,6-diphenyl-2-m-tolyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)benzensulfonamides to study the sulfonylimine-sulfonamide tautomerism. This goal is performed using the density functional theory (DFT). Four plausible isomers including the keto and enol sulfonamide as well as Z and E sulfonimide are considered for each of compounds. The DFT calculations are carried out at the B3LYP/6-31+G(d,p) level of theory. The optimized geometric parameters such as bond lengths and bond angles are calculated. The computed IR vibrational frequencies and 1H NMR chemical shifts are in good agreement with the experimental data. The structure of all compounds is confirmed on the basis of their full spectral data. In all three compounds, the Z-sulfonimide form is more stable than the other isomers. A high energy gap between the frontier orbitals confirms the stability of the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号