首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
对氮气和氦气在粗糙微通道以及光滑微通道内流动进行了阻力特性实验研究。实验结果表明,即使在较小的相对粗糙度高度下,由于微通道中的粗糙度分布密集,会极大地增加流动阻力,这是导致文献中微通道流动阻力系数实验值相互偏差的主要原因之一;而对于滑移区的气体流动,气体稀薄性使流动阻力明显减小而导致流量增加。  相似文献   

2.
采用格子Boltzmann方法模拟了微通道在滑移区内不同Knudsen数下的微气体Poiseuille流,分析了微气体流动的速度分布以及流量与压降的关系,并给出了相对滑移长度和Poiseuille数随Knudsen数的变化特性。研究结果表明,微气体Poiseuille流的速度轮廓呈抛物线分布,但是边界速度大于0,出现速...  相似文献   

3.
压力边界条件下微通道内气体流动换热特性研究   总被引:5,自引:0,他引:5  
本文用直接模拟蒙特卡罗方法对给定进出口压力边界条件下微通道内气体的流动换热特性进行了数值模拟,给 出了壁面与流体的温差对气体沿程压力、温度及数密度分布的影响。计算结果表明,当壁温高于流体温度时,温差仅出现 在通道进出口处,但其发生机理却不同;流体可压缩性与稀薄性均得到增强,沿程压力分布更加非线性。  相似文献   

4.
对直径为0.531,0.834,1.042和1.931 mm的圆形微通道内液氮的单相流动和传热进行了实验研究.在10,000~90,000的高雷诺数范围内,测量了流动摩擦系数、局部和平均对流换热系数.结果表明,流动摩擦系数随微通道壁面粗糙度的增加而变大.微通道中局部对流换热系数受到液氮导热系数变化的影响沿管程逐渐下降约12.5%.传统的Gnielinski换热关联式经过流动摩擦系数的修正后与实验换热系数符合较好.  相似文献   

5.
微管道气体流动的蒙特卡洛直接模拟   总被引:6,自引:2,他引:6  
采用蒙特卡洛直接模拟(DSMC)方法,数值模拟了微管道中压力驱动的气体流动,结果表明固壁边界存在速度滑移,稀薄气体效应明显;整个流场温度变化很小,流动马赫数很小,密度、压力流向变化非常大而横向几乎不变;可压缩性导致压力随流向的非线性分布,但这种效应随Knudsen数增大而减弱.  相似文献   

6.
杨学军  蒋建政  樊菁 《计算物理》2007,24(2):181-186
矩形微槽道的各个流向截面可以局部近似为平面Poiseuille流动,应用信息保存(IP)方法和直接模拟Monte Carlo(DSMC)方法计算了从连续介质区到自由分子流区的平面Poiseuille流动,利用其结果对Beskok-Karniadadis公式和质量流率动理论因子进行修正和重新拟合,给出在整个稀薄气体流动领域都适用的微槽道气体流动速度分布.  相似文献   

7.
微通道换热研究进展综述   总被引:1,自引:0,他引:1  
微通道换热器由于其较强的换热性能,较小的体积等诸多优势,而日益受到人们的关注。针对微通道换热性能的研究也越来越多。文中针对微通道换热研究中的沸腾换热,纳米颗粒,通道结构和临界热流密度研究近况进行了综述。  相似文献   

8.
微通道内气体流动的三维效应   总被引:1,自引:0,他引:1  
本文使用直接模拟Monte carlo法对三维直微通道内的气体流动进行了数值模拟,对比了不同截面形状的通道 不同驱动压差的情况,探讨了截面形状对微通道内气体流动三维效应的影响以及三维效应对流量-压差关系的影响。  相似文献   

9.
采用计算流体动力学方法,对两种不同浓度的水-Al2O3纳米流体以及五种不同高宽比的微通道热沉的流动换热特性开展了数值模拟研究.结果 表明,提高纳米颗粒体积分数可降低流固换热面的平均温度,从而提升纳米流体的换热能力,但同时也会显著提升系统的泵功率;通过改变微通道高宽比可有效提升热沉的换热能力,增大高宽比能够有效降低热沉受...  相似文献   

10.
基于压力边界条件开展了微尺度低速流动DSMC方法的研究, 定义了两个无量纲参数作为微尺度DSMC方法下网格尺寸与时间步长的约束条件, 通过微尺度Poiseuille流进行了方法的验证与比较, 获得了网格尺寸与时间步长的一般原则。在此基础上, 对变截面的单孔和双孔模型的微通道气体流动进行DSMC模拟, 结果表明, 通道几何形状对微尺度气体流动具有显著影响, 孔口后由于通道收缩, 产生压降, 导致气流加速, 并在孔口下游拐角处发生分离; 双孔口模型的流动结构与单孔口模型相似, 且在相同压差情况下, 经双孔口后的气体流速低于经单孔口后的气体流速; 随着入口压力的增加, 经过孔口压缩后的速度越大, 分离区尺寸也越大。   相似文献   

11.
以粗糙平行平板微通道为研究对象,以三角形锯齿状粗糙元模拟固体表面的粗糙度,采用CFD流体固体共轭传热技术数值研究了绝对粗糙度和相对粗糙度对平行平板微通道流动和传热特性的影响,着重分析了粗糙度和流体速度对水力入口段长度和热力入口段长度的影响规律,同时研究了相对粗糙度对微通道转捩雷诺数的影响,为进一步揭示微微通道的流动和传热机理提供了依据.  相似文献   

12.
速度滑移和温度阶跃对微尺度流动和换热的影响   总被引:4,自引:0,他引:4  
1前言近年来,对微尺度换热器和微型槽道内介质的流动和换热的研究日益引起人们的重视[1]。但各研究者的结论却大相径庭[2-6],其流动与换热规律,迄今无统一认识。本文认为:随着流道尺寸的减小,边界效应的影响不可忽视。基于此,通过引入Knudsen数,以局部充分发展流动假设为前提,在N-S方程基础上,数值模拟了微槽道的流动与换热情况,并与国外的实验结果进行了对比分析[5-6].2压力分布方程的导出及与实验结果的比较首先从平行平板间的不可压缩流体流动分析入手,流动方向为X向。连续性方程可简化为:引入速度滑移边界条件:由式(1)…  相似文献   

13.
微细光滑管内气体的流动与传热特性研究   总被引:5,自引:0,他引:5  
在评述当前微细管内流动和换热特性研究的基础上提出了需考虑流体压缩性对速度剖面的影响。可压缩流动守恒方程组的数值解结果表明:运动流体的压缩性不仅使管内平均流速增加,而且使速度剖面更加饱满,从而使局域阻力系数和换热系数增加。与此同时,尽管管道的长细比很大,亦不可能出现充分发展的速度和温度剖面。这是由于微细管道中由于阻力引起的压力降可以很大,它所引起的流动加速达较大马赫数时,压缩性对阻力系数和传热系数的影响就不能忽略。  相似文献   

14.
压力与流量对喷雾冷却换热特性的影响   总被引:1,自引:1,他引:0  
本文是在封闭式喷射腔内,以一次蒸馏水作为工质,结合本文所给出的喷嘴高度 H 与有效流量 G' 相互关系的理论模型,对微喷嘴的工质入口压力 P 和工质有效流量 G' 对喷雾冷却的换热特性的影响进行了实验研究.研究结果表明,入口压力 P 对换热效果的影响非常小,而有效流量 G' 对换热效果的影响很大,并且存在一个能使换热效果达到最好的有效流量值.  相似文献   

15.
入口高度和热流对太阳能热烟囱系统内流动换热的影响   总被引:1,自引:0,他引:1  
对从太阳能热烟囱系统抽象出的流动和换热模型进行了数值模拟.数值结果表明,随着底部加热热流密度的增加,系统内的空气流量增加;当集热棚高度变化时,流经系统的空气流量和系统出力存在最大值;在本文计算采用的几何和物理条件下,入口高度约为20 m时系统的空气流量取得最大值;系统内部的压力差随着集热棚高度的增加而减小.  相似文献   

16.
本文对几种不同几何模型的低波纹通道进行了传热及阻力性能数值研究,在一定的流速范围内得出了传热和阻力的特性曲线.分析了通道高度、波纹波峰高度、通道宽度对流动与换热的影响.结果表明,通道高度越小,换热越强,同时压降也增加;波纹波峰高度越大,换热加强,压降也相应增加;通道宽度越大,换热几乎不变,但压降随之降低.  相似文献   

17.
脉动热管的工质流动和传热特性实验研究   总被引:21,自引:1,他引:21  
建立了半可视化环路型脉动热管的实验台并进行了实验。结果表明,加热功率较小时管内工质的流型是间歇振动,加热功率较大时管内工质的流型是单向脉动流动。随着蒸发器加热功率的增大,热阻减小。随着脉动热管倾角的增加,热阻是先降后增,60°的实验台倾角会使热阻达到最小。蒸发器的加热位置改变后的影响效果并不显著。不凝性气体的含量对蒸发器和冷凝器运行的温度水平和热阻的影响较大。有些结果是首次发现,对改进脉动热管的物理模型有重要参考价值。  相似文献   

18.
微槽道气体流动的统计模拟   总被引:3,自引:0,他引:3  
谢翀  樊菁  沈青 《计算物理》2002,19(5):377-382
利用基于分子模型的统计模拟方法——信息保存方法(IP)统计模拟了实验条件下微槽道气体流动,仔细讨论了用IP方法模拟长槽道稀薄气流时遇到的问题,并给出了解决的方法,即采取守恒形式的控制方程避免质量流量计算误差积累,并利用超松弛方法使收敛过程加速.将IP计算结果与压力分布和质量流量实验数据进行了比较.  相似文献   

19.
换热器集箱管组流动和换热分析   总被引:1,自引:0,他引:1  
本文通过实验研究和理论分析,提出准确计算换热器集箱管组中流量分配的离散模型.应用离散模型对某台锅炉再热器的爆管原因进行分析,指出蒸汽侧流量偏差太大是造成超温爆管的主要原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号