首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes containing pyridine-2-carboxaldehyde (pyca) ligand acting as κ(2)-(N,O) chelates in [MX(CO)(3)(pyca)] (M = Mn, Re; X = Cl, Br), or [MoX(methallyl)(CO)(2)(pyca)] (X = Cl, Br), are good precursors for iminopyridine complexes derived from amino esters and peptides of formula [MX(CO)(3)(py-2-C(H)═NCHX-COOY)] or [MoX(methallyl)(CO)(2)(py-2-C(H)═NCHX-COOY)], via Schiff condensation of the aldehyde function of pyca with the terminal NH(2) group of the amino ester or peptide. X-ray determinations confirm the structures and show that in solid phase the peptide chains assemble through H-bonds adopting different patterns which depend on the geometry of the metal-ligand fragments. The H-bonding patterns have been analyzed in detail and described by using graph set methods. In most cases, Mo complexes show intramolecular arrangement involving the halogen (Cl or Br) and an NH group of the side chain. For the Mn and Re complexes, the peptide side arms form infinite chains, helices, and rings. In many cases, the terminal carboxylic O-H function is engaged in a "terminal" H-bond with a polar molecule of solvent (THF or acetone), instead of forming the usual head-to-head arrangement found in simple carboxylic acids. For the longer tripeptide Gly-Gly-Gly, a discrete, dimeric association is observed, in which the peptide chains show antiparallel arrangement with a complementary disposition of the internal N-H and C═O functions. DOSY experiments in solution show significant changes in the diffusion rates upon addition of OPBu(3), which indicate H-bonding interaction of OPBu(3) with the peptide hydrogens.  相似文献   

2.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

3.
The ionic complexes [Pd(NP 3)X]X [NP 3 = tris[2-(diphenylphosphino)ethyl]amine, X = Cl (1), Br(2)] and [M(PP 3)X]X [PP 3 = tris[2-(diphenylphosphino)ethyl]phosphine, M = Pd, X = Cl (3), Br(4); M = Pt, X = Cl (5), Br (6)] contain square pyramidal (1, 2) and trigonal bipyramidal (3- 6) cations with three fused chelate rings to M and one M-X bond. By addition of AgX salts (X = Cl, Br, NO 3) an unexpected ring-opening reaction occurs with formation of the heteronuclear species PdAg(NP 3)X 3 [X = Cl (7), Br (8)], MAg(PP 3)X 3 [M = Pd, X = Cl (9), Br (10), NO 3 (13);M = Pt, X = Cl (11), Br (12), NO 3 (14)]. The complexes have been characterized in the solid state and solution. The X-ray crystal structures of 9 and 13 reveal a distorted square-planar arrangement to Pd(II) that is coordinated to three P of PP 3 (the central and two terminal atoms) and to one chloride (9) or one oxygen atom of NO 3 (13). The resultant dangling phosphorus of the ring opening is bound to Ag(I) that completes the three- [PAgCl 2 ( 9)] and four-coordination [PAg(ONO 2)(O 2NO) (13)] through the donor atoms of the anions with the nitrates in 13 unusually acting as both mono- and bidentate ligands. Complexes 7, 8, 10, and 11 undergo oligomerization in solution. Complex 10 oligomerizes giving rise to the ionic compound [Pd 4Ag 2(PP 3) 2 Br 9]Br ( 10a) whose X-ray crystal structure indicates the presence of cations with a Pd(mu-Br) 3Pd unit that connects via bromide bridges two BrPdP 2PPAg Br 2 fragments containing distorted square-planar and trigonal-planar Pd(II) and Ag(I) centers, respectively. The palladium(II) metal centers in the central unit afford the five-coordination (PdBr 5) with a distorted trigonal bipyramidal geometry. The ionic system [Pt 2Ag 2(PP 3) 2 Cl 5]Cl (11a) consists of chloride anions and heteronuclear monocations. The X-ray crystal structure reveals that the cations contain two distorted square-planar ClPtP 3 units bridged by one PAgCl(mu-Cl) 2AgP fragment that is bearing tetrahedral (PAgCl 3) and trigonal planar PAgCl 2 silver(I) centers. Further additions of the corresponding AgX salts to complexes 7- 14 did not give rise to any new ring-opening reaction.  相似文献   

4.
Treatment of [Fe(IV)(O)(TPA)(NCMe)](CF3SO3)2 [TPA, N,N,N-tris(2-pyridylmethyl)amine] with 3 equiv of NR4X (X = CF3CO2, Cl, or Br) in MeCN at -40 degrees C affords a series of metastable [Fe(IV)(O)(TPA)(X)]+ complexes. Some characteristic features of the S = 1 oxoiron(IV) unit are quite insensitive to the ligand substitution in the equatorial plane, namely, the Fe-O distances (1.65-1.66 A), the energy ( approximately 7114.5 eV) and intensity [25(2) units] of the 1s-to-3d transition in the X-ray absorption spectra, and the M?ssbauer isomer shifts (0.01-0.06 mm.s(-1)) and quadrupole splittings (0.92-0.95 mm.s(-1)). The coordination of the anionic X ligand, however, is evidenced by red shifts of the characteristic near-IR ligand-field bands (720-800 nm) and spectroscopic observation of the bound anion by (19)F NMR for X = CF3CO2 and by EXAFS analysis for X = Cl (r(Fe-Cl) = 2.29 A) and Br (r(Fe-Br) = 2.43 A). Density functional theory calculations yield M?ssbauer parameters and bond lengths in good agreement with the experimental data and produce excited-state energies that follow the trend observed in the ligand-field bands. Despite mitigating the high effective charge of the iron(IV) center, the substitution of the MeCN ligand with monoanionic ligands X- decreases the thermal stability of [Fe(IV)(O)(TPA)]2+ complexes. These anion-substituted complexes model the cis-X-Fe(IV)=O units proposed in the mechanisms of oxygen-activating nonheme iron enzymes.  相似文献   

5.
The d4 halide complexes [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp'] {X=F, Cl, Br or I; R=Me or Ph; M=Mo or W; Tp'=hydrotris(3,5-dimethylpyrazolyl)borate} undergo one-electron oxidation to the d3 monocations [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp']+, isolable for M=W, R=Me. X-Ray structural studies on the redox pairs [WX(CO)(eta-MeC[triple bond, length as m-dash]CMe)Tp']z (X=Cl and Br, z=0 and 1), the ESR spectra of the cations [WX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp']+ (X=F, Cl, Br or I; R=Me or Ph), and DFT calculations on [WX(CO)(eta-MeC[triple bond, length as m-dash]CMe)Tp']z (X=F, Cl, Br and I; z=0 and 1) are consistent with electron removal from a HOMO (of the d4 complexes) which is pi-antibonding with respect to the W-X bond, pi-bonding with respect to the W-C(O) bond, and delta-bonding with respect to the W-Calkyne bonds. The dependence of both oxidation potential and nu(CO) for [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp'] shows an inverse halide order which is consistent with an ionic component to the M-X bond; the small size of fluorine and its closeness to the metal centre leads to the highest energy HOMO and the lowest oxidation potential. In the cations [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp']+ electronegativity effects become more important, leading to a conventional order for Cl, Br and I. However, high M-F pi-donation is still facilitated by the short M-F distance.  相似文献   

6.
Palladium and platinum dihalides react with dl-selenomethionine (sem), yielding the complexes [M(sem)X2](M=Pd,X=Cl or Br;M=Pt,X=Cl) and, in the presence of N,N-dimethylformamide (dmf), the species [M(sem)X2]·dmf (M=Pd, X=I; M=Pt, X=Cl, Br or I). The complexes were characterized by i.r. and proton n.m.r. spectroscopy and by thermogravimetric analysis, and their properties were compared with those of the dl-methionine analogues [M(Met)Cl2] and [Pt(Met)Cl2]·dmf. On the basis of n.m.r. data in deuteriated dimethyl sulfoxide, the platinum complexes undergo ligand rearrangement to form [Pt(sem)2]2+ moieties whereas the solvent does not seem to interact with the palladium coordination sphere, which contains the chelated N, Se ligand.  相似文献   

7.
The reaction of p-phenylenediamine with excess PCl 3 in the presence of pyridine affords p-C 6H 4[N(PCl 2) 2] 2 ( 1) in good yield. Fluorination of 1 with SbF 3 produces p-C 6H 4[N(PF 2) 2] 2 ( 2). The aminotetra(phosphonites) p-C 6H 4[N{P(OC 6H 4OMe- o) 2} 2] 2 ( 3) and p-C 6H 4[N{P(OMe) 2} 2] 2 ( 4) have been prepared by reacting 1 with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in the presence of triethylamine. The reactions of 3 and 4 with H 2O 2, elemental sulfur, or selenium afforded the tetrachalcogenides, p-C 6H 4[N{P(O)(OC 6H 4OMe- o) 2} 2] 2 ( 5), p-C 6H 4[N{P(S)(OMe) 2} 2] 2 ( 6), and p-C 6H 4[N{P(Se)(OMe) 2} 2] 2 ( 7) in good yield. Reactions of 3 with [M(COD)Cl 2] (M = Pd or Pt) (COD = cycloocta-1,5-diene) resulted in the formation of the chelate complexes, [M 2Cl 4- p-C 6H 4{N{P(OC 6H 4OMe- o) 2} 2} 2] ( 8, M = Pd and 9, M = Pt). The reactions of 3 with 4 equiv of CuX (X = Br and I) produce the tetranuclear complexes, [Cu 4(mu 2-X) 4(NCCH 3) 4- p-C 6H 4{N(P(OC 6H 4OMe- o) 2) 2} 2] ( 10, X = Br; 11, X = I). The molecular structures of 1- 3, 6, 7, and 9- 11 are confirmed by single-crystal X-ray diffraction studies. The weak intermolecular P...P interactions observed in 1 leads to the formation of a 2D sheetlike structure, which is also examined by DFT calculations. The catalytic activity of the Pd(II) 8 has been investigated in Suzuki-Miyaura cross-coupling reactions.  相似文献   

8.
The reaction of 9,10-phenanthrenequinone (PQ) with [M(II)(H)(CO)(X)(PPh(3))(3)] in boiling toluene leads to the homolytic cleavage of the M(II)-H bond, affording the paramagnetic trans-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 1; M = Os, X = Br, 3) and cis-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 2; M = Os, X = Br, 4) complexes. Single-crystal X-ray structure determinations of 1, 2·toluene, and 4·CH(2)Cl(2), EPR spectra, and density functional theory (DFT) calculations have substantiated that 1-4 are 9,10-phenanthrenesemiquinone radical (PQ(?-)) complexes of ruthenium(II) and osmium(II) and are defined as trans-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (1), cis-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (2), trans-[Os(II)(PQ(?-))(PPh(3))(2)(CO) Br] (3), and cis-[Os(II)(PQ(?-))(PPh(3))(2)(CO)Br] (4). Two comparatively longer C-O [average lengths: 1, 1.291(3) ?; 2·toluene, 1.281(5) ?; 4·CH(2)Cl(2), 1.300(8) ?] and shorter C-C lengths [1, 1.418(5) ?; 2·toluene, 1.439(6) ?; 4·CH(2)Cl(2), 1.434(9) ?] of the OO chelates are consistent with the presence of a reduced PQ(?-) ligand in 1-4. A minor contribution of the alternate resonance form, trans- or cis-[M(I)(PQ)(PPh(3))(2)(CO)X], of 1-4 has been predicted by the anisotropic X- and Q-band electron paramagnetic resonance spectra of the frozen glasses of the complexes at 25 K and unrestricted DFT calculations on 1, trans-[Ru(PQ)(PMe(3))(2)(CO)Cl] (5), cis-[Ru(PQ)(PMe(3))(2)(CO)Cl] (6), and cis-[Os(PQ)(PMe(3))(2)(CO)Br] (7). However, no thermodynamic equilibria between [M(II)(PQ(?-))(PPh(3))(2)(CO)X] and [M(I)(PQ)(PPh(3))(2)(CO)X] tautomers have been detected. 1-4 undergo one-electron oxidation at -0.06, -0.05, 0.03, and -0.03 V versus a ferrocenium/ferrocene, Fc(+)/Fc, couple because of the formation of PQ complexes as trans-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (1(+)), cis-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (2(+)), trans-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (3(+)), and cis-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (4(+)). The trans isomers 1 and 3 also undergo one-electron reduction at -1.11 and -0.96 V, forming PQ(2-) complexes trans-[Ru(II)(PQ(2-))(PPh(3))(2)(CO)Cl](-) (1(-)) and trans-[Os(II)(PQ(2-))(PPh(3))(2)(CO)Br](-) (3(-)). Oxidation of 1 by I(2) affords diamagnetic 1(+)I(3)(-) in low yields. Bond parameters of 1(+)I(3)(-) [C-O, 1.256(3) and 1.258(3) ?; C-C, 1.482(3) ?] are consistent with ligand oxidation, yielding a coordinated PQ ligand. Origins of UV-vis/near-IR absorption features of 1-4 and the electrogenerated species have been investigated by spectroelectrochemical measurements and time-dependent DFT calculations on 5, 6, 5(+), and 5(-).  相似文献   

9.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

10.
Summary The Schiff bases a-(C5H4N)CMe=NNHCOR (R = Ph, 2-thienyl or Me), prepared by condensation of 2-acetylpyridine with the acylhydrazines RCONHNH2, coordinate in the deprotonated iminol form to yield the octahedral complexes, M[NNO]2 M = Co or Ni; [NNOH] = Schiff base and the square-planar complexes, Pd[NNO]Cl. The Schiff bases also coordinate in the neutral keto form yielding the octahedral complexes (M[NNOH]2)Z2 (M = Ni, Co or Fe; Z = C104, BF4 or N03) and complexes of the type M[NNOH]X2 (M = Ni, Co, Fe or Cu; X = Cl, Br or NCS). Spectral and x-ray diffraction data indicate that the complexes M[NNOH]X2 (M = Ni or Fe) are polymeric octahedral, as are the corresponding cobalt complexes having R = 2-thienyl. However, the cobalt complexes Co[NNOH]X2 (X = CI or Br; R = Ph or Me) and the copper complexes Cu[NNOH]CI2 (R = Ph, 2-thienyl or Me) are five-coordinate, while the thiocyanato complex Co[NNOH](NCS)2 (R = 2-thienyl) is tetrahedral.  相似文献   

11.
The thioether-functionalized metalloligand ferrocenyl-bis(phosphonite), Fe(C5H4PR)2 (4, R=-OC10H6(micro-S)C10H6O-) is synthesized in three steps starting from ferrocene, and its coordination behavior toward various transition-metal derivatives is described. The reactions of 4 with [Rh(CO)2Cl]2 or M(COD)Cl2 afforded the chelate complexes, cis-[Rh(CO)Cl{Fe(C5H4PR)2-kappaP,kappaP}] (5) or cis-[MCl2{Fe(C5H4PR)2-kappaP,kappaP}] (6, M=PdII; 7, M=PtII), respectively. However, treatment of 4 with CuX (X=Cl, Br, and I) produces binuclear complexes, [Cu2(micro-X)2(MeCN){Fe(C5H4PR)2-kappaP,kappaP}] (8, X=Cl; 9, X=Br; 10, X=I) where the sulfur atom on one side of the ligand is involved in a weak interaction with the copper center. Reaction of 4 with 1 equiv of Ag(PPh3)OTf gives the mononuclear chelate complex [Ag(OTf)PPh3{Fe(C5H4PR)2-kappaP,kappaP}] (11), whereas treatment with 2 equiv of AuCl(SMe2) produces the dinuclear gold complex [Au(Cl){Fe(C5H4PR)2-kappaP,kappaP}Au(Cl)] (12). The crystal structures of 10 and 12 are reported, where a strong metallophilic interaction is observed between the closed-shell metal centers. The palladium complex 6 catalyzes the Suzuki cross-coupling reactions of aryl bromides with phenylboronic acid with excellent turnover numbers (TON up to 1.36x10(5)).  相似文献   

12.
Divalent metal halides react with pyridyloxy-substituted 2,2'-dioxybiphenyl-cyclotri- and cyclotetraphosphazene ligands to form the complexes, [MLX2] [M=Co or Cu; L=(2,2'-dioxybiphenyl)tetrakis(2-pyridyloxy)cyclotriphosphazene (L1) or (2,2'-dioxybiphenyl)tetrakis(4-methyl-2-pyridyloxy)cyclotriphosphazene (L2); X=Cl or Br], [ZnLCl2] [L=bis(2,2'-dioxybiphenyl)bis(2-pyridyloxy)cyclotriphosphazene (L3) or bis(2,2'-dioxybiphenyl)bis(4-methyl-2-pyridyloxy)cyclotriphosphazene (L4)], [MLCl2] [M=Cu or Hg; L=tris(2,2'-dioxybiphenyl)bis(2-pyridyloxy)cyclotetraphosphazene (L5)] and [Cu2LCl4] (L=trans-bis(2,2'-dioxybiphenyl)tetrakis(2-pyridyloxy)cyclotetraphosphazene (L6)]. Single-crystal X-ray structures show the L2 ligand complexes to have a N3Cl2 five-coordinate, trigonal-bipyramidal donor set with the phosphazene ring and pendant pyridyloxy nitrogens binding to the metal ions. The coordinated L2 ligand in the complex, [CoL2Cl2], slowly hydrolyses in acetonitrile with the loss of a pyridine pendant arm to form a dimetallic species, which has been characterized by crystallography as [{CoL2aCl}]2.4MeCN (L2a=[N3P3(biph)(OPy)3(O)]-, biph=2,2'-dioxybiphenyl, OPy=2-oxopyridine). The ligands, L3, L4, L5, and L6, bind to the metal halides via gem-substituted pyridyloxy nitrogens only. The resulting rigid eight-membered chelate rings all have distorted boat conformations, which force distorted-tetrahedral N2Cl2 coordination environments onto the metal ions. The spectroscopic (ESR and electronic) and magnetic properties of the complexes are reported.  相似文献   

13.
This work describes new synthetic routes to produce mixed carbonyl-nitrosyl complexes of technetium(I) and rhenium(I) in aqueous media. NaNO2, NOHSO4, and NO2(g) have been used to produce in situ nitrous acid as the primary source of NO+. Starting from the organometallic precursor fac-[MX3(CO)3]+, 1 (M = 99Tc, Re; X = Cl, Br), the formation of mixed dicarbonyl-mononitrosyl complexes was observed in aqueous hydrochloric and hydrobromic acid. Time-dependent analyses of the reactions by means of HATR-IR and 99Tc NMR spectroscopy in solution revealed the almost quantitative substitution of one CO ligand by NO+ and, thus, the formation of complexes with facial arrangement of the three pi-acceptor ligands. In the case of technetium, the monomeric complex (NEt4)[TcCl3(CO)2NO] (3a) and the dimeric, chloride-bridged, neutral complex [TcCl(mu-Cl)(CO)2NO]2 (4a) were produced. In the case of rhenium, the monomeric species (NEt4)[ReBr2X(CO)2NO] (X = Br (3b), NO3 (5)) was solely isolated. The X-ray structure of complexes 4a and 5 are discussed. The crystallographic analyses revealed the coordination of the NO+ group trans to the terminal chloride (4a) or the bromide (5), respectively. Crystal data: complex 4a (C4Cl4N2O(6)Tc2), monoclinic, Cc, a = 18.82(3) A, b = 6.103(6) A, c = 12.15(2) A, alpha = 90 degrees , beta = 105.8(2) degrees , gamma = 90 degrees , V = 1343(3) A(3), Z = 4; complex 5 (C10H20N3O(6)Br2Re), orthorhombic, P2(1)2(1)2(1), a = 10.2054(5) A, b = 12.5317(7) A, c = 13.9781(7) A, V = 1787.67(16) A(3), Z = 4. The isolated complexes and their potential facial isomers have been further investigated by density functional theory (DFT) calculations. The energy differences of the isomers are relatively small; however, the calculated energies are consistent with the formation of the observed and isolated compounds. The calculated bond lengths and angles of complex 5 are in good agreement with the data determined by X-ray diffraction. Experiments on the no-carrier-added level starting from fac-[99mTc(H2O)3(CO)3]+ revealed the formation of the complex fac-[99mTcCl(H2O)2(CO)2NO]+ in reasonable good yields. This aqueous-based, synthetic approach will enable the future evaluation of this novel, low-valent metal precursor for potential use in radiopharmacy.  相似文献   

14.
Volatile 1,1-dimethyl-2-(trimethylsilyl)hydrazido(1-) complexes of niobium, tantalum, molybdenum, and tungsten have been synthesized and fully characterized for use as precursors in their chemical vapor deposition to metal nitrides. Different reaction patterns were observed in the hydrazinolysis of imido complexes of those four metals with (trimethylsilyl)dimethylhydrazine HN(SiMe3)NMe2 (H-TDMH). [Ta(NtBu)Cl3Py2] gave [Ta(TDMH)2Cl3] (1) with loss of the imido functionality, and [M(NtBu)2Cl2Py2] gave [M(NtBu)2(TDMH)Cl] (M = W, 8a; Mo, 8b). Reactions of both types of metal imido complexes with magnesium hydrazides produced [M(NtBu)(TDMH)2X] (M = Ta, X = Cl, 2a; X = Br, 3a; M = Nb, X = Cl, 2b; X = Br, 3b) and [M(NtBu)2(TDMH)X] (M = W, X = Cl, 8a; X = Br, 9a; M = Mo, X = Cl, 8b; X = Br, 9b). Halogen substitution reactions at 2 and 3 by -NMe2, -NHtBu, and CH2Ph groups as well as imido ligand replacement reactions have been investigated. The results of crystal structure determinations of 1, 4a, 5a, 6a, 7b, and 9b are presented.  相似文献   

15.
The complexes [(C-N-C)MX(n)(thf)(m)] with the 'pincer' 2,6-bis(imidazolylidene)pyridine, (C-N-C) = 2,6-bis(arylimidazol-2-ylidene)pyridine, aryl = 2,6-Pr(i)2C6H3, M = V, X = Cl, n = 2, m = 1 1a; M = Cr, X = Cl, n = 2, m = 0, 2a, X = Br, 2b; M = Mn, X = Br, n = 2, m = 0, 3; M = Nb, X = Cl, n = 3, m = 0, 4; and M = U, X = Cl, n = 4, m = 0, 5, were synthesised by (a) substitution of labile tmed (1a), thf (2a, 3, 5) or dme (4) by free (C-N-C) or by (b) reaction of the bisimidazolium salt (CH-N-CH)Br2 with {Cr[N(SiMe3)2]2(thf)2} followed by amine elimination (2b). Attempted alkylation of 1a, 2, 3a and 4 with Grignard or alkyl lithiums gave intractable mixtures, and in one case [reaction of 1a with (mesityl)MgBr] resulted in exchange of Cl by Br (1b). Oxidation of 1a or [(C-N-C)VCl3] with 4-methylmorpholine N-oxide afforded the trans-V(C-N-C)(=O)Cl2, 6, which by reaction with AgBF4 in MeCN gave trans-[V(C-N-C)(=O)(MeCN)2][BF4]2, 7. Reaction of 1a with p-tolyl azide gave trans-V(C-N-C)(=N-p-tolyl)Cl2 8. The complex trans-Ti(C-N-C)(=NBu(t))Cl2, 9, was prepared by substitution of the pyridine ligands in Ti(NBu(t))Cl2(py)3 by C-N-C.  相似文献   

16.
The nitrile ligands in trans-[PtX2(PhCN)2] (X = Cl, Br, I) undergo sequential 1,3 dipolar cycloadditions with nitrones R1R2C=N+(Me)-O(-) (R1 = H, R2 = Ph; R1 = CO2Et, R2 = CH2CO2Et) to selectively form the Delta4-1,2,4-oxadiazoline complexes trans-[PtX2(PhCN) (N=C(Ph)-O-N(Me)-CR1R2)] or trans-[PtX2(N=C(Ph)-O-N(Me)-CR1R2)2] in high yields. The reactivity of the mixed ligand complexes trans-[PtX2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] towards oxidation and ligand substitution was studied in more detail. Oxidation with Cl2 or Br2 provides the Pt(IV) species trans-[PtX2Y2(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] (X, Y = Cl, Br). The mixed halide complex (X = Cl, Y = Br) undergoes halide scrambling in solution to form trans-[PtX(4-n)Yn(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] as a statistical mixture. Ligand substitution in trans-[PtCl2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] allows for selective replacement of the coordinated nitrile by nitrogen heterocycles such as pyridine, DMAP or 1-benzyl-2-methylimidazole to produce mixed ligand Pt(II) complexes of the type trans- [PtX2(heterocycle)(N=C(Ph)-O-N(Me)-CR1R2)]. All compounds were characterised by elemental analysis, mass spectrometry, IR and 1H, 13C and 195Pt NMR spectroscopy. Single-crystal X-ray structural analysis of (R,S)-trans-[PtBr2(N=C(Ph)-O-N(Me)-CH(Ph))2] and trans-[PtCl2(C5H5N)(N=C(Ph)-O-N(Me)-CH(Ph))] confirms the molecular structure and the trans configuration of the heterocycles relative to each other.  相似文献   

17.
The metal halides of Group 5 MX(5) (M = Nb, Ta; X = F, Cl, Br) react with ketones and acetylacetones affording the octahedral complexes [MX(5)(ketone)] () and [TaX(4){kappa(2)(O)-OC(Me)C(R)C(Me)O}] (R = H, Me, ), respectively. The adducts [MX(5)(acetone)] are still reactive towards acetone, acetophenone or benzophenone, giving the aldolate species [MX(4){kappa(2)(O)-OC(Me)CH(2)C(R)(R')O}] (). The syntheses of (M = Ta, X = F, R = R' = Ph) and (M = Ta, X = Cl, R = Me, R' = Ph) take place with concomitant formation of [(Ph(2)CO)(2)-H][TaF(6)], and [(MePhCO)(2)-H][TaCl(6)], respectively. The compounds [acacH(2)][TaF(6)], and [TaF{OC(Me)C(Me)C(Me)O}(3)][TaF(6)], have been isolated as by-products in the reactions of TaF(5) with acacH and 3-methyl-2,4-pentanedione, respectively. The molecular structures of, and have been ascertained by single crystal X-ray diffraction studies.  相似文献   

18.
On Reactions of Subgroup. VI. Hexacarbonyls with Tin(II) and Germanium (II) Halides The neutral complexes M(CO)5SnX2 and M(CO)5GeCl2 (M = Cr, Mo, W; X = Cl, Br, J) have been prepared by a photochemical reaction between M(CO)6 and SnX2, or CsGeCl3 in THF. The reaction of these compounds with [N(CH3)4]X (X = Cl, Br, J) in THF was found to lead to a series of anions [M(CO)5SnX3]? or [M(CO)5GeCl3]? (M = Cr, Mo, W; X = Cl, Br, J), some of which have previously been prepared. The physical properties and IR-spectra of the above compounds are discussed.  相似文献   

19.
A variety of Group 10 metal complexes [MXY(dfppp)], M = Ni, X, Y = Cl, Br, M = Pd, Pt, X, Y = Cl or CH(3), containing the recently reported highly fluorous diphosphine ligand, dfppp, 1,3-bis[di(fluoroponytail)phosphino]propane, {(p-F(13)C(6)C(6)H(4))(2)P}(2)(CH(2))(3) have been synthesised. They have been characterised by NMR, mass spectrometry and microanalysis, with two platinum complexes, [PtCl(2)(dfppp)] and [PtClMe(dfppp)], structurally characterised by single crystal X-ray diffraction studies. The highly fluorous nature of the ligands affords the complexes good supercritical CO(2) solubility as measured by supercritical fluid extraction (SFE), and has allowed for the copolymerisation of CO and ethylene using [PdClMe(dfppp)] as the catalyst precursor and CO(2) as the solvent. Additionally, PtCl(2) complexes of the new ligands dfppb, {(p-F(13)C(6)C(6)H(4))(2)P}(2)(CH(2))(4), and dfpop, {(p-F(13)C(6)C(6)H(4)O)(2)P}(2)(CH(2))(3), have also been prepared and characterised.  相似文献   

20.
The reaction of the in situ generated cyclooctene iridium(I) derivative trans-[IrCl(C8H14)(PiPr3)2] with benzene at 80 degrees C gave a mixture of the five-coordinate dihydrido and hydrido(phenyl) iridium(III) complexes [IrH2(Cl)(PiPr3)2] 2 and [IrH(C6H5)(Cl)(PiPr3)2] 3 in the ratio of about 1 : 2. The chloro- and fluoro-substituted arenes C6H5X (X = Cl, F), C6H4F2 and C6H4F(CH3) reacted also by C-H activation to afford the corresponding aryl(hydrido) iridium(III) derivatives [IrH(C6H4X)(Cl)(PiPr3)2] 7, 8, [IrH(C6H3F2)(Cl)(PiPr3)2] 9-11 and [IrH[C6H3F(CH3)](Cl)(PiPr3)2] 12, 13, respectively. The formation of isomeric mixtures had been detected by 1H, 13C, 19F and 31P NMR spectroscopy. Treatment of 3 and 7-13 with CO gave the octahedral carbonyl iridium(III) complexes [IrH(C6H3XX')(Cl)(CO)(PiPr3)2] 5, 14-20 without the elimination of the arene. The reactions of trans-[IrCl(C8H14)(PiPr3)2] with aryl ketones C6H5C(O)R (R = Me, Ph), aryl ketoximes C6H5C(NOH)R (R = Me, Ph) and benzaloxime C6H5C(NOH)H resulted in the formation of six-coordinate aryl(hydrido) iridium(III) compounds 21-25 with the aryl ligand coordinated in a bidentate kappa2-C,O or kappa2-C,N fashion. With C6H5C(O)NH2 as the substrate, the two isomers [IrH[kappa2-N,O-NHC(O)C6H5](Cl)(PiPr3)2] 26 and [IrH[kappa2-C,O-C6H4C(O)NH2](Cl)(PiPr3)2] 27 were prepared stepwise. Treatment of trans-[IrCl(C8H14)(PiPr3)2] with benzoic acid gave the benzoato(hydrido) complex [IrH[kappa2-O,O-O2CC6H5](Cl)(PiPr3)2] 29 which did not rearrange to the kappa2-C,O isomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号