首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inelastic electron tunneling spectroscopy (IETS) is a unique surface and interface analytical technique using electron tunneling through a metal/insulator/metal tunneling junction at cryogenic temperatures. It gives the vibrational spectrum of a very thin (nm) insulator film and the adsorbed species on it. The high sensitivity, good resolution, and wide spectral range inherent in IETS enable us to analyze the surface and interface of the insulator in detail. The tunneling junction is a good model system for oxide catalysts, electronic devises, and solid state sensors. Information about the surfaces of alumina and magnesia, the adsorption states and chemical reactions of adsorbed species occurring on these oxides can be obtained through an analysis of the tunneling spectra. The structures and properties of evaporated thin semiconductor films can also be studied. In this review, the surface characterization of alumina and magnesia, the adsorption and surface reactions of organic acids, esters, amides, and nitryls on these oxides, and the characterization of thin evaporated films of Si, Ge, and the oxides are summarized.  相似文献   

2.
Scientific interest in atomically controlled layer-by-layer fabrication of transition metal oxide thin films and heterostructures has increased intensely in recent decades for basic physics reasons as well as for technological applications. This trend has to do, in part, with the coming post-Moore era, and functional oxide electronics could be regarded as a viable alternative for the current semiconductor electronics. Furthermore, the interface of transition metal oxides is exposing many new emergent phenomena and is increasingly becoming a playground for testing new ideas in condensed matter physics. To achieve high quality epitaxial thin films and heterostructures of transition metal oxides with atomically controlled interfaces, one critical requirement is the use of atomically flat single terminated oxide substrates since the atomic arrangements and the reaction chemistry of the topmost surface layer of substrates determine the growth and consequent properties of the overlying films. Achieving the atomically flat and chemically single terminated surface state of commercially available substrates, however, requires judicious efforts because the surface of as-received substrates is of chemically mixed nature and also often polar. In this review, we summarize the surface treatment procedures to accomplish atomically flat surfaces with single terminating layer for various metal oxide substrates. We particularly focus on the substrates with lattice constant ranging from 4.00 Å to 3.70 Å, as the lattice constant of most perovskite materials falls into this range. For materials outside the range, one can utilize the substrates to induce compressive or tensile strain on the films and explore new states not available in bulk. The substrates covered in this review, which have been chosen with commercial availability and, most importantly, experimental practicality as a criterion, are KTaO3, REScO3 (RE = Rare-earth elements), SrTiO3, La0.18Sr0.82Al0.59Ta0.41O3 (LSAT), NdGaO3, LaAlO3, SrLaAlO4, and YAlO3. Analyzing all the established procedures, we conclude that atomically flat surfaces with selective A- or B-site single termination would be obtained for most commercially available oxide substrates. We further note that this topmost surface layer selectivity would provide an additional degree of freedom in searching for unforeseen emergent phenomena and functional applications in epitaxial oxide thin films and heterostructures with atomically controlled interfaces.  相似文献   

3.
Sol–gel coating of metal oxides on polymer substrates is a useful process to fabricate various organic–inorganic hybrid materials under mild conditions. However, this process is hardly applicable to pristine polyimide (PI) films because their surfaces do not display effective functional groups for metal oxide coatings. In this study, we firstly examined direct sol–gel coating of titania thin layers on unmodified PI film surfaces. The results confirmed homogeneous, ultrathin titania layer coating and showed that the thickness and microscopic morphology of the titania layers were affected by titanium alkoxide concentrations in the spin coating solutions. We next investigated titania layer coating on surface-modified PI films that prepared using alkaline hydrolysis, which generated carboxylic acid groups on the film surfaces. Optimal hydrolysis time was determined using FT-IR spectroscopy and contact angle measurements. After sol–gel titania coating on the hydrolyzed PI film surfaces, the Scotch tape test was conducted to evaluate adhesion strength between the titania layers and PI film surfaces. Morphological observations of the sample surfaces after the tests clearly showed that surface modification of PI films increased titania layer adhesions. Effect of hydrothermal treatments on film formability and adhesion strength between titania-PI film interfaces was also evaluated.  相似文献   

4.
This review emphasises the role of aryl diazonium compounds as a new class of coupling agents for grafting polymer thin layers onto carbon, diamond, metals, metal oxides, alloys, semi-conductors, ceramics, and polymers. Physical and chemical methods are first reported for anchoring aryl layers to the surfaces, then the review concentrates on the modification of the above substrates by thin polymer films via a range of the “grafting from” and “grafting onto” strategies. Some applications are described which highlight the important role that diazonium salts will continue to play in the near future in the polymer and surface sciences.  相似文献   

5.
Molecular metal oxides, so-called polyoxometalates (POMs), have shown outstanding performance as catalysts and lately attracted interest as materials in energy conversion and storage systems due to their capability of storing and exchanging multiple electrons. Here, we report the first example of redox-driven reversible electrodeposition of molecular vanadium oxide clusters, leading to the formation of thin films. The detailed investigation of the deposition mechanism reveals that the reversibility is dependent on the reduction potential. Correlating electrochemical quartz microbalance studies with X-ray photoelectron spectroscopy (XPS) data gave insight into the redox chemistry and oxidation states of vanadium in the deposited films in dependence on the potential window. A multi-electron reduction of the polyoxovanadate cluster, which facilitates the potassium (K+) cation-assisted reversible formation of potassium vanadium oxide thin films was confirmed. At anodic potentials, re-oxidation of the polyoxovanadate and complete stripping of the thin film is observed for films deposited at potentials more positive than −500 mV vs. Ag/Ag+, while electrodeposition at more negative cathodic potential reduces the electrochemical reversibility of the process and increases the stripping overpotential. As proof of principle, we demonstrate the electrochemical performance of the deposited films for potential use in potassium-ion batteries.  相似文献   

6.
Polymer assisted deposition (PAD) is a chemical solution route to high quality thin films of metal oxides. This technique employs metal ions coordinated to polymers as the film precursor. The use of polymer bound metals has several advantages. The polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of uniform metal oxide films. The nature of the metal oxide deposition is dominated by bottom-up growth, leading to ready formation of crack-free epitaxial metal oxides and the ability to coat nanofeatured substrates in a conformal fashion.  相似文献   

7.
Troy D. Manning  Ivan P. Parkin   《Polyhedron》2004,23(18):3087-3095
The dual source atmospheric pressure chemical vapour deposition (APCVD) reaction of VOCl3 and H2O was used to prepare thin films of vanadium oxides on glass and silicon substrates. The thin films were characterised by X-ray diffraction, Raman spectroscopy X-ray photoelectron spectroscopy and scanning electron microscopy. At reactor temperatures above 600 °C with a gas-phase excess of water over VOCl3, vanadium(IV) oxide thin films were produced which show a thermochromic transition temperature of 67 °C. The APCVD process is directly compatible with high throughput float-glass production enabling the use of a thin film of VO2 as an intelligent window coating. With reactor temperatures below 600 °C or with a gas-phase excess of VOCl3 over water, V2O5 thin films were produced. Vanadium(IV) oxide thin films could also be prepared on silicon substrates from the APCVD reaction of VOCl3 and H2O, which opens up further technological applications for the APCVD of VO2 thin films.  相似文献   

8.
通过水热方法在掺杂氟的SnO2(FTO)导电玻璃上制备了不同形貌的氧化铁薄膜。利用无机铁盐浸渍法在FTO玻璃上进行氧化铁晶种的预处理使得所制备的氧化铁薄膜更致密且均一。研究了表面活性剂对氧化铁晶体形貌的影响。使用十二烷基苯磺酸钠(SDBS)和三嵌段聚合物P123做为形貌导向剂分别得到棒状和四方体形貌的氧化铁薄膜。氧化铁薄膜可调的形貌可能是由于表面活性剂和铁氧团簇的组装或者某些晶面吸附了阴离子而改变了生长速率引起的。同时,研究了其光电性能,具有四面体形貌的氧化铁薄膜可以产生较大的光电流,这是由于其缩短了光生空穴的扩散距离。  相似文献   

9.
Silicone-based materials often contain vinylsiloxane and hydrosiloxane groups for cross-linking by a radical or addition reaction. Such functional groups can influence the interactions with fillers or with surfaces of substrates when used as adhesives. This work examined how these functional groups interact with aluminum oxide surfaces. For this purpose, aluminum oxide powders with large surface areas of 150 m2/g and different acid-base properties were examined. Siloxanes were applied as thin layers to mainly obtain information from the interphase by vibrational spectroscopy. It was observed that vinyl groups show low interactions with aluminum oxide surfaces even at elevated temperatures. In contrast to this, hydrosiloxanes undergo strong interactions and reactions with aluminum oxides already at room temperature. Activated Si─H species were observed as an intermediate state. On the one hand, interactions and reactions might contribute to adhesion, but on the other hand, the cross-linking reaction can be influenced near the surface, leading to lower mechanical strength.  相似文献   

10.
Ultrathin metal oxides exhibit unique chemical properties and show promise for applications in heterogeneous catalysis. Monolayer FeO films supported on metal surfaces show large differences in reactivity depending on the metal substrate, potentially enabling tuning of the catalytic properties of these materials. Nitric oxide (NO) adsorption is facile on silver‐supported FeO, whereas a similar film grown on platinum is inert to NO under similar conditions. Ab initio calculations link this substrate‐dependent behavior to steric hindrance caused by substrate‐induced rumpling of the FeO surface, which is stronger for the platinum‐supported film. Calculations show that the size of the activation barrier to adsorption caused by the rumpling is dictated by the strength of the metal–oxide interaction, offering a straightforward method for tailoring the adsorption properties of ultrathin films.  相似文献   

11.
The electrochemical reduction of oxides to metals has been studied for decades. Earlier work produced polycrystalline bulk metals. Here, we report that pre-electrodeposited epitaxial face-centered cubic magnetite thin films can be electrochemically reduced to epitaxial body-centered cubic iron thin films in aqueous solution on single-crystalline gold substrates at room temperature. This technique opens new possibilities to produce special epitaxial metal/metal oxide heterojunctions and a wide range of epitaxial metallic alloy films from the corresponding mixed metal oxides.  相似文献   

12.
Surface science methods originating from analysis of noble metal catalysts are increasingly applied to metal oxides. These methods provide direct access to fundamental structural properties and phase equilibria governing the catalytic properties of metal oxide surfaces. However, no systematic way existed so far for transferring this knowledge to technical catalysts. The aim of this paper is to combine surface science with chemical engineering methods to bridge this gap. Styrene synthesis over pure and K-doped iron oxides is used as an example to develop and to explain the methodology. Single crystal films (SCF), grown epitaxially on a Pt-carrier are considered as ideal model surfaces. Comprehensive UHV analyses yield the structural properties of SCF as well as their interaction with relevant components of the reaction mixture. Their results are combined with conversion experiments to derive a mechanistic catalyst model along with quantitative information on the reaction rates. The activity of SCF as well as their phase transitions under reactive conditions can be described with a continuum model depending on the macroscopic properties of the system. This model forms the crucial link towards technical catalysts. It is shown that the behaviour of a powder catalyst can be described as a superposition of the above kinetic model and an appropriate porous model. In this paper we review the developed methodology and conclude with the evaluation of the concept.  相似文献   

13.
A new family of porous inorganic solids based on nanocrystalline metal oxides is discussed. These materials, made up of 4-7 nm MgO, CaO, Al2O3, ZnO, and others, exhibit unparalleled destructive adsorption properties for acid gases, polar organics, and even chemical/biological warfare agents. These unique sorption properties are due to nanocrystal shape, polar surfaces, and high surface areas. Free-flowing powders or consolidated pellets are effective, and pore structure can be controlled by consolidation pressures. Chemical properties can be adjusted by choice of metal oxide as well as by incorporating other oxides as monolayer films.  相似文献   

14.
Within a comprehensive programme including synthesis via metal organic chemical vapour deposition (MOCVD) and characterization of inorganic compounds and materials of possible interest in technologies based on thin films, results concerning the deposition of metal oxides by means of volatile organometal precursors are reported. In particular, thallium oxide films obtained by the MOCVD technique and commercial powders of Tl2O3 and Tl2O adsorbed on several metal substrates (stainless steel, Si, Cu, Mo, Pt) were studied by secondary ion mass Spectrometry (SIMS) under ion beam bombardment at different ion energies. The positive- and negative-ion mass spectra exhibit typical isotopic patterns of several ionic species produced by interesting interfacial reactions, and the analysis of their relative abundances provides a measure of oxide reactivity towards different substrates. SIMS measurements of metal substrates were also performed. The ability and limits of SIMS in the reactivity study of thallium oxide powders and films and, in addition, in the identification of reaction products evidencing impurity species that, in turn, can be ascribed to the substrates or to the precursors used for the oxide synthesis is pointed out.  相似文献   

15.
In this paper the preparation, characterization and properties of metal oxide overlayers on dissimilar metal substrates is reviewed. It is shown that using a general recipe metal oxide surfaces can be produced, which are easily accessible with modern surface science techniques. Many different stoichiometries and structures of the oxides can be prepared by variation of the preparation conditions, that do or do not have a counterpart in bulk oxide surfaces. In addition information about the metal oxide surfaces is obtained without experimental problems such as sample mounting, sample heating and sample purity.  相似文献   

16.
Metal oxides are virtually everywhere – only gold has the property not to form an oxide on its surface when exposed to the ambient. As a result, understanding the physics and chemistry of oxide surfaces is a topic of pronounced general interest and, of course, also a necessary prerequisite for many technical applications. The most important of these is certainly heterogeneous catalysis, but one has to realize that – under ambient conditions – virtually all phenomena occurring at liquid/metal and gas/metal interfaces are determined by the corresponding oxide. This applies in particular to friction phenomena, adhesion and corrosion. A necessary – but not necessarily sufficient – condition for unravelling the fundamentals governing this complex field is to analyze in some detail elementary chemical and physical processes at oxide surfaces. Although the Surface Science of metal surfaces has seen a major progress in the past decades, for oxides detailed experimental investigations for well-defined single crystal surfaces still represent a formidable challenge – mostly because of technical difficulties (charging), but to some extent also due to fundamental problems related to the stabilization of polar surfaces. As a result, the amount of information available for this class of materials is – compared to that at hand for metals – clearly not satisfactory. A particular disturbing lack of information is that about the presence of hydrogen at oxide surfaces – either as hydroxy-species or in form of metal hydrides.In the present review we will summarize recent experimental and theoretical information which has become available from single crystal studies on ZnO surfaces. While the number of papers dealing with another oxide, rutile TiO2, is significantly larger (although titania does not exhibit a polar surface), also for zinc oxide a basis of experimental and theoretical knowledge as been accumulated, which – at least for the non-polar surfaces – allows to understand physico-chemical processes on an atomic level for an increasing number of cases. In particular with regards to the interaction with hydrogen a number of – often surprising – observations have been reported recently. Some of them carry implications for the behaviour of hydrogen on oxide surfaces in general. We will present the currently available information for both, experiment and theory, and demonstrate the rather large variety of this material’s surface properties.  相似文献   

17.
A new one-step method is reported for the deposition of hybrid mesoporous thin films on various electrode surfaces (gold, platinum, glassy carbon). Deposition was achieved by spin-coating sol–gel mixtures in the presence of a surfactant template to get mesostructured thin layers on the various conducting substrates. Film formation occurred by evaporation induced self-assembly (EISA) involving the hydrolysis and (co)condensation of silane and/or organosilane precursors on the electrode surface. Extraction of the surfactant from the ordered mesoporous films led to a large increase of mass transport rates into the materials and imparted high accessibility to the organic moieties in case of functionalized mesoporous overlayers. The electrochemical properties of the film-modified electrodes have been studied by cyclic voltammetry (CV), and also via the chemical accumulation of mercury ions prior to their stripping analysis by differential pulse voltammetry (i.e. for thiol-functionalized thin films). Some evidences to support the formation of self-assembled monolayers (SAMs) on electrodes, have been also discussed. The formation of well-adhering mesoporous thin films on solid electrode surfaces is expected to have a high impact on the development of new electrochemical sensors.  相似文献   

18.
The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well‐defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye‐catching hydrogen switchable mirror effect, the visualization of solid‐state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin‐metal hydride films are used as model systems to study metal–insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.  相似文献   

19.
We have studied the adsorption of Au, Pd, and Pt atoms on the NiO(100) surface and on NiO/Ag(100) thin films using plane wave DFT+U calculations. The scope of this work is to compare the adsorption properties of NiO, a reducible transition metal oxide, with those of MgO, a simple binary oxide with the same crystal structure and similar lattice parameter. At the same time, we are interested in the adsorption characteristics of NiO ultra-thin films (three atomic layers) deposited on Ag(100) single crystals. Also in this case the scope is to compare NiO/Ag(100) with the corresponding MgO/Ag(100) films which show unusual properties for the case of Au adsorption. The results show that the transition metal atoms bind in a similar way on NiO(100) and NiO/Ag(100) films, with Pt, Pd, and Au forming bonds of decreasing strength in this order. No charging effects occur for Au adsorbed on NiO/Ag(100) films, at variance with MgO/Ag(100). The reasons are analyzed in terms of work function of the metal/oxide interface. Possible ways to modify this property by growing alternate layers of MgO and NiO are discussed.  相似文献   

20.
Formation process of convexly shaped oxide micropatterns using hydrophobic-hydrophilic patterned surface has been examined, and this technique was applied to several oxide thin films such as SnO2, ZrO2, TiO2 and Al2O3. Hydrophobic-hydrophilic patterned surfaces were prepared on glass substrates by selective UV irradiation through a photomask on double-layered films of a very thin TiO2 gel film as the underlayer and a hydrolyzed fluoroalkyltrimethoxysilane layer as the top layer. Precursor solutions were then spin-coated on the hydrophobic-hydrophilic patterns, and the coated substrates were dried at room temperature. The micropatterns of oxides were very difficult to be formed on the hydrophobic-hydrophilic patterned surfaces from metal-alkoxides as a precursor solution, but convexly shaped micropatterns were formed on the hydrophilic regions of the pattern when metal chlorides or oxychlorides were used as starting materials. This patterning technique potentially has a wide variety of applications such as fabrication of micro-optical components and finely patterned transparent electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号