首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adsorption entanglement layers are thick, i. e. multimolecular layers formed at solid surfaces during the flow of high molecular weight polymer solutions. The present publication is concerned with the influence of solution concentration and solvent power on the formation of these layers. Three polymers have been used, polyethylene, polymethylmethacrylate and atactic polystyrene in various solvents. The formation and thickness of layers were monitored from their effect on flow behaviour. Two flow geometries were used: Couette flow — where the layers cause peaks in the shear stress during continuous shearing, and capillary flow where the layers reduce the flow rate. The results indicate that there is a critical concentration below which no layers form, and that this critical concentration is an order of magnitude less than the conventionally defined overlap concentration. It is also deduced that the layers form more quickly, and grow to be thicker when better solvents are used.  相似文献   

2.
Many molecules in their excited states react with other species having suitable electron donor or acceptor properties to form complexes (exciplexes) stable only in the excited state. This letter reports a study of the modes of decay of a series of exciplexes in which the donor molecule (1,2-benzperylene) formed exciplexes with a series of dimethylaniline derivatives. By measuring the flourescence and intersystem crossing quantum yields, together with the fluorescence lifetimes of the exciplexes, it was possible to derive the rate constants for fluorescence, radationless decay to the ground state, and intersystem crossing. The first two decay processes were found to show a marked sensitivity to the exciplex energy, while the intersystem crossing rate constant was affected only by the presence of heavy atoms.  相似文献   

3.
Abstract— The decay of semireduced methylene blue (MB') formed in the photoreduction of the dye by aryl- and alkylamines was examined by flash photolysis. The second order decay of MB in methanol produced using arylamines and 1,4-diazabicyclooctane as photoreducing agents led to complete regeneration of the dye and amine. The rate constants for a series of N.N-dimethylanilines showed a small substituent effect ( p = 0.69 ± 0.16) compatible with recombination of MB' with arylamine derived radical cations. A study of the solvent effect on the recombination process revealed the importance of the stability of the radical cation toward the solvent and also indicated that the reaction approaches the rate of diffusion. The photoreduction of the dye by most alkylamines examined resulted in permanent bleaching of methylene blue. The second order decay of MB' produced using tertiary aliphatic amines led exclusively to formation of the leuco-dye with no apparent regeneration of methylene blue; this process was tentatively assigned to a reaction of MB' with α-amino radicals formed from the amine radical cation. It was concluded that the methylene blue-sensitized photooxidation of amines involves a Type I process and possible mechanisms are discussed.  相似文献   

4.
Adsorption-entanglement layers are thick, i.e. multimolecular, layers formed at solid surfaces from solutions of high molecular weight polymers in a state of flow. This publication, the second part of a series of four, is concerned with the effect that the chemical nature of the surface has on formation of these layers. It is shown that for the solutions of polyethylene (PE) and polymethylmethacrylate (PMMA) the layers form most readily on carbon surfaces. Further it is shown that in the case of PE, addition of aluminium stearate can prevent formation of the layers along steel surfaces.These and other effects reported in the paper all bear on actual situations encountered in rheological practice and in particular on the measurement of viscosities. It is concluded that the marked dependence of layer formation on the chemical nature and treatment of the surface is responsible for the differences in viscosity measurements featuring in earlier works by different authors.  相似文献   

5.
采用SEM、XRD、TGA等分析方法对高抗冲聚苯乙烯/有机蒙脱土(HIPS/OMMT)纳米复合材料在燃烧过程中形成的炭渣残余物结构特征进行了研究,包括炭层断面形态,片层结构及炭渣热稳定性等.结果表明复合材料在热释放速率峰值之后,形成了具有阻燃作用的炭层结构,其特征是在炭层表面形成了一层比较薄但密实的皮层,皮层之下是较厚的一层蜂窝层,这种"皮-窝"结构赋予炭层良好的阻隔热的作用,减缓了热分解过程.XRD分析还表明原有插层结构经过燃烧已破坏,在皮-窝炭层中都已消失,结合SEM观察结果,蒙脱土片层多以剥离的单片层无规分布,皮层和窝层中聚合物已基本烧蚀,只剩下片状的蒙脱土聚集在一起形成了一种纳米尺寸的网状结构并包含了一定量的分解温度很高的碳质物质,不仅形成了稳定的保护层,而且碳质物质的生成也降低了材料分解挥发速率.窝层含有大量尺寸较大的空穴结构,隔气效果不如皮层,但显著地增大了炭层的体积,整体上能起到较大的隔热作用.二者共同构筑的皮-窝炭层结构在复合材料的燃烧过程中起到了阻燃的作用.  相似文献   

6.
When polymeric materials doped with nitroxides of the 2,2,6,6-tetramethylpiperidine type are exposed to light, the nitroxide concentration decreases. The two mechanisms for the decrease of the nitroxide are the reaction of nitroxide with free radicals produced during photolysis of the polymer to form amino ethers and the abstraction of hydrogen atoms by excited-state nitroxides to form hydroxyl amines. Excited-state nitroxides can be formed in two ways: by direct absorption and by energy transfer. In this paper, the effect of energy transfer on the rate of decay of the nitroxide signal is studied, and measurements of nitroxide decay are used to probe energy transfer in crosslinked polymeric coatings. A simple kinetic scheme is used to interpret nitroxide decay during photolysis of both solutions and polymers containing benzophenone. These results are used to show that the slope of the line relating nitroxide decay rate to nitroxide concentration is essentially determined by energy transfer from a coating-based chromophore to nitroxide. The nitroxide decay assay is also used to study the effectiveness of a benzotriazole ultraviolet light absorber as a quencher.  相似文献   

7.
In the present work the oxidation behavior of ageing treated steel was examined up to 1000°C in different environments (O2 and CO2) and with different heating rates. The examination was conducted by means of thermogravimetric analysis, scanning electron microscopy and X-ray diffraction. In this study it was deduced that in the case of O2 an oxide scale is formed on top of the steel. The oxidation is uniform and the growth of the scale is more intent at low heating rate. It consist of different Fe, Mn, Mo and Cr oxides which are adjusted in the form of layers. This phenomenon was explained by the different diffusion coefficients of each metal in the already formed scale. Regarding the oxidation in CO2, the scale formation takes place at a lower temperature than in the case of O2. Hence the examined substrate is more vulnerable in CO2.  相似文献   

8.
Abstract— The 3-tyrosinyl free radicals (3-Tyr) and iodine atom are formed by flash photolysis of 3-iodotyrosine (3-Tyr-I) in aqueous solutions at pH 5. The presence of iodine atoms in the medium is characterized by the absorption spectrum and the decay kinetics of I formed when KI is added to the system. In the absence of radical scavengers, the 3-Tyr adds to or reacts with the parent molecule to produce a transient species, probably a radical dimer, which has an absorption maximum at 405 nm. The decay of this transient follows second order kinetics whose rate constant increases with decreasing 3-iodotyrosine concentration. Measurements of the dependence of the transient yield on the concentration of added ethanol indicate that the 3-Tyr radical reacts with ethanol by hydrogen abstraction. The rate constants of reaction of the 3-Tyr radical with 3-iodotyrosine and ethanol are deduced from results.  相似文献   

9.
A series of Ni- and/or Cu-containing coatings formed by plasma electrolytic oxidation on aluminum and titanium are examined by X-ray photoelectron spectroscopy. Binding energies of core electrons, elemental composition, chemical state of elements, and features of the structural organization of the surface and nearsurface layers of the coatings are determined. A combination of the data collected indicates similar regularities of the composition and significant distinctions in the structure of the coatings formed. It is shown that the coatings formed on titanium are characterized by a considerably higher phosphorus concentration, and correspondingly, phosphates, unlike the coatings formed on aluminum, in which base metal and 3d element (Ni or Cu) oxides are dominant. In both cases, Cu is mainly concentrated in the surface layers of the coatings whereas Ni is mainly concentrated in the near-surface layers.  相似文献   

10.
Atomic force microscopy, scanning tunnel microscopy, and IR spectroscopy are employed to study composite films formed from dispersions of silver nanoparticles in an aqueous solution of Asp-Glu-Val-Asp-Trp-Phe-Asp peptide on different substrates at room temperature. It is established that pure peptide crystallizes on substrates to yield different structures, the character of which essentially depends on the chemical nature of a substrate, method of its pretreatment, and solution pH. When films are formed from dispersions containing both silver nanoparticles and peptide, globular structures are formed, in which individual nanoparticles are included into a peptide matrix. It is established that, during the reduction of silver ions and stabilization of resulting nanoparticles, peptide bonds are partly ruptured and another isomeric form (cisconfiguration) of peptide molecules is realized in the silver nanoparticle dispersion in its solution. Distributions of the surface potential and local tunnel voltage-current characteristics are measured for the composite layers. The voltage-current characteristics of all examined composite layers are essentially nonlinear. It is established that the charge transfer in the composite and pure peptide layers is carried out via the Poole-Frenkel mechanism and the Schottky overbarrier emission, respectively.  相似文献   

11.
In this publication we describe a new self-association process, which leads to the formation of ultra-thin alginate layers at the interface between oil and water. The water phase contains a highly dilute solution of sodium alginate. These macromolecules are negatively charged and they are not surface active. The oil phase contains a small concentration of positively charged surfactants. At the interface between oil and water, the cationic surfactants tend to form complexes with the negatively charged alginate polyelectrolytes in the aqueous solutions. This leads to striking adsorption processes of the solved polysaccharide molecules at the oil-water interface. Upon the addition of calcium ions, a cross-linking process sets in and one obtains the thin viscoelastic membranes, which are anchored at the interface between oil and water. The thickness of these membranes is of the order of 0.2 mm. Similar structures can also be formed by solving positively charged Gemini surfactants in the oil phase. In this case, the cationic surfactant molecules induce the adsorption processes of alginate macromolecules, and they also act as cross-linking compounds. In a series of experiments, we measured the surface rheological properties of these ultra-thin alginate membranes. The results of these investigations point to the presence of electrostatically stabilized membranes. Special interest was given to the influence of the guluronate content of the alginates, which is important for the cross-linking mechanism according to the egg-box model. Finally, this article finishes with the discussion of the proposed building mechanisms of these membranes.  相似文献   

12.
13.
The spectral and photophysical properties of indigo derivatives with di-, tetra-, and hexa-substitution in their neutral (keto) form are investigated in solution. The study comprises absorption and emission spectra, together with quantitative measurements of quantum yields of fluorescence (phi(F)) and singlet oxygen formation (phi(Delta)) and fluorescence lifetimes. The energy difference between the HOMO and LUMO orbitals is dependent on the degree (number of groups) and relative position of substitution. The phi(F) and phi(Delta) values were found to be very low S(0) internal conversion yields and thus, with the other data, to determine the rate constants for all decay processes. From these, several conclusions are drawn. Firstly, the radiationless rate constants, k(NR) , clearly dominate over the radiative rate constants, k(F) , (and processes). Secondly, the main deactivation channel for the compounds in their keto form is the radiationless S(1) approximately approximately -->S(0) internal conversion process. Finally, although the changes are relatively small, internal conversion yield seems to be independent of the overall pattern of substitution. A more detailed investigation of the decay profiles with collection at the blue and red emission of the fluorescence band of indigo and one di-substituted indigo reveals the decays to be bi-exponential and that at longer emission wavelengths these appear to be associated with both rise and decay times indicating that two excited species exist, which is consistent with a keto-excited form giving rise (by fast proton transfer) to the enol-form of indigo. Evidence is presented which supports the idea that intramolecular (and possibly some intermolecular) proton transfer can explain the high efficiency of internal conversion in indigo.  相似文献   

14.
Bacillus subtilis can form a spore, which is a dormant type of cell, when its external environment becomes unsuitable for vegetative growth. The spore is surrounded by a multilayered proteinaceous shell called a spore coat, which plays a crucial role in dormancy and germination. Of the over 70 proteins that form the spore coat, only a small subset of them affect its morphogenesis; they are referred to as morphogenetic proteins. How these morphogenetic proteins interact, and furthermore, how they build the ordered, functional coat layers is not well understood. Elucidating the self‐assembly mechanism of individual proteins into such a complex structure may contribute to its potential use in nano‐biotechnology applications for preparing highly organized, robust, and resistant proteinaceous layers. Herein, direct, noncovalent, low‐affinity interactions between the spore‐coat morphogenetic proteins SpoIVA, SpoVID, and SafA were studied by using single‐molecule recognition force spectroscopy in vitro for the first time. Based on the real‐time examination of interactions between these three proteins, a series of dynamic kinetic data were obtained. It was also observed that the SafA–SpoVID interaction was stronger than that of SafA–SpoIVA.  相似文献   

15.
Rate constants for radiative decay, radiationless decay, and intersystem crossing are reported for a series of excited states formed by reaction of cyanoanthracene acceptors with alkylbenzenes as donors in several solvents of moderate to low polarity. The excited states have widely varying degrees of charge transfer, from essentially pure electron transfer states to pure locally excited states. The data illustrate the fundamental factors that control the contrasting relative efficiencies of radiative and radiationless processes in electron transfer compared to locally excited states. The radiationless decay rate constants can be described quantitatively as a function of the extent of charge transfer using weighted contributions from a locally excited decay mechanism and a pure electron-transfer type mechanism. The factors that control the rate constants for radiationless decay in excited states with intermediate charge-transfer character are discussed.  相似文献   

16.
The electronic spectra were measured and the unimolecular decay kinetics of the isomeric forms (cis and trans) of 4-methoxyphenylnitroso oxide in acetonitrile, benzene, and hexane was studied using flash photolysis. The cis form absorbed in a shorter wavelength region and was more labile than the trans form. The difference between the reactivity of the two species increased on going from hexane to acetonitrile. The temperature dependences of reaction rate constants were studied for both isomeric forms. The analysis of products of flash photolysis of 4-methoxyphenyl azide in the presence of oxygen allowed for understanding the mechanism of thermal decay of nitroso oxides. It was shown that the trans nitroso oxide is converted into cis nitroso oxide. The latter undergoes an unusual ring cleavage reaction to form 4-methoxy-6-oxohexa-2,4-dienenitrile N-oxide derivative. We conclude that the nitro- and nitrosobenzenes, which are the main products of the steady-state photolysis of aromatic azides in the presence of oxygen, are formed by the photochemical transformation of the nitroso oxides.  相似文献   

17.
In the last years, adsorbed collagen was shown to form layers with a supramolecular organization depending on the substrate surface properties and on the preparation procedure. If the concentration of collagen and the duration of adsorption are sufficient, fibrillar collagen structures are formed, corresponding to assemblies of a few molecules. This occurs more readily on hydrophobic compared to hydrophilic surfaces. This study aims at understanding the origin of such fibrillar structures and in particular at determining whether they result from the deposition of fibrils formed in solution or from the building of assemblies at the interface. Therefore, type I collagen solutions with an increasing degree of aggregation were prepared, using the “neutral-start” approach, by ageing pH 5.8 solutions at 37 °C for 15 min, 2 or 7 days. The obtained solutions were used to investigate the influence of collagen aggregation in solution on the supramolecular organization of adsorbed collagen layers, which was characterized by X-ray photoelectron spectroscopy and atomic force microscopy. Polystyrene and plasma-oxidized polystyrene were chosen as substrates for the adsorption. The size and the density of collagen fibrils at the interface decreased upon increasing the degree of aggregation of collagen in solution. This is explained by a competitive adsorption process between monomers and aggregates of the solution, turning at the advantage of the monomers. More aggregated solutions, which are thus depleted in free monomers, behave like less concentrated solutions, i.e. lead to a lower adsorbed amount and less fibril formation at the interface. This study shows that the supramolecular fibrils observed in adsorbed collagen layers, especially on hydrophobic substrates, are not formed in the solution, prior to adsorption, but are built at the interface, through the assembly of free segments of adsorbed molecules.  相似文献   

18.
The variation in the structure of the ethylenediaminetetraacetates of the series of rare-earth elements in crystals and in solutions was studied by various experimental methods. It was established that crystalline complexes with identical structure exist throughout the whole series of rare-earth elements, with a coordination number of 9 (and, possibly, 8 in the yttrium group) and with three coordinated water molecules. They were studied by the x-ray erystallographic method. Such structures are not formed in solutions. In the crystals they are thermo-dynamically stable for the cerium group and decompose spontaneously in the yttrium group, changing into the more stable form KLnEDTA·2H2O, similar in structure to the dissolved complexes of this group. It was established that the anhydrous complexes do not exist. The EDTA is hexadentate throughout in the crystals, and pentadentate in solutions from La to Nd. From Nd to Tb there is an equilibrium between two forms with pentadentate and hexadentate EDTA and a coordination number of 8, and this is followed by a decrease to a coordination number of 7 and an increase to hexadentate at the end of the series. In complexes of the cerium group in solution three molecules of water are coordinated, and in the center of the series there is an equilibrium between forms with three and two water molecules, which decreases to one water molecule at the end of series. The number of isomers of the complexes of EDTA with the rare-earth element (from neodymium, to lutecium) is 2. The thermodynami'c characteristics of the LnEDTA complexes are fully explained by the variation of their structure in the series of rare-earth elements.Translated from Teoreticheskaya i Éksperitmental'naya Khimiya, Vol. 21, No. 4, pp. 440–450, July–August, 1985.  相似文献   

19.
Effect of γ-irradiation on the isothermal decomposition of pure and doped (Ba2+, 0.50 mol%) caesium bromate has been studied in the temperature range 633–673 K. It is indicated that though the pure and pure irradiated crystals are immune to decomposition, doped and doped irradiated crystals undergo decomposition rapidly. There is initial rapid gas evolution representing 1–2% reaction, which is completely eleminated in doped irradiated crystals. The other stages exhibited by the crystals are, (1) acceleratory and (2) decay stages. Presence of two decay stages (one short and one long) is indicated in the doped substance, and the short decay diminishes with increase in temperature and virtually remains absent at 673 K. The acceleratory as well as decay periods of doped and doped irradiated crystals are analysed according to Prout-Tompkins, Avrami-Erofeev and Contracting square models. The rate constants in all the stages increase with increase in temperature. The energy of activation for the acceleratory periods of both the substances are almost same (± 10 kJ/mol) irrespective of the kinetic equation employed. Similar is the case with decay stages. But the energy of activation of the decay stages are higher than those of the acceleratory stages. Microscopic observation reveals that the reaction begins essentially on surfaces by the rapid formation of an interface and is followed by the penetration of the interface into the crystallite. The melting of a eutectic formed between the product CsBr and the parent material causes a marked increase in the rate.  相似文献   

20.
The goal of this work is the preparation of monolayers of cellulose I nanocrystals providing flat crystalline cellulose surfaces. Suspensions of cellulose nanocrystals were prepared by hydrolyzing ramie and tunicin fibers with sulfuric acid. Due to surface grafted sulfate groups, the negatively charged, rod-like cellulose nanocrystals were found to form stable layers at the air-water interface in the presence of a cationic amphiphilic molecule such as dioctadecyldimethylammonium (DODA) used in this work. These layers were formed at different cellulose-DODA weight ratios, compressed and analyzed by tensiometry, ellipsometry and Brewster angle microscopy. At low cellulose concentrations the layers are discontinuous, becoming dense and homogeneous upon reaching a critical weight ratio, which depends on the aspect ratio of the cellulose nanocrystals. After transfer onto silicon wafers, the surface composition and morphology as well as the thickness of the films were examined by X-ray photoelectron spectroscopy, ellipsometry and atomic force microscopy. The results indicate that they are monolayer films, well structured, relatively smooth and pure. These films offer a crystalline and easily reproducible model cellulose surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号