首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let X be a Hausdorff topological space, and let \({\mathscr {B}}_1(X)\) denote the space of all real Baire-one functions defined on X. Let A be a nonempty subset of X endowed with the topology induced from X, and let \({\mathscr {F}}(A)\) be the set of functions \(A\rightarrow {\mathbb R}\) with a property \({\mathscr {F}}\) making \({\mathscr {F}}(A)\) a linear subspace of \({\mathscr {B}}_1(A)\). We give a sufficient condition for the existence of a linear extension operator \(T_A:{\mathscr {F}}(A)\rightarrow {\mathscr {F}}(X)\), where \({\mathscr {F}}\) means to be piecewise continuous on a sequence of closed and \(G_\delta \) subsets of X and is denoted by \({\mathscr {P}_0}\). We show that \(T_A\) restricted to bounded elements of \({\mathscr {F}}(A)\) endowed with the supremum norm is an isometry. As a consequence of our main theorem, we formulate the conclusion about existence of a linear extension operator for the classes of Baire-one-star and piecewise continuous functions.  相似文献   

2.
In this paper, we show that for a positive operator A on a Hilbert \(C^*\)-module \( \mathscr {E} \), the range \( \mathscr {R}(A) \) of A is closed if and only if \( \mathscr {R}(A^\alpha ) \) is closed for all \(\alpha \in (0,1)\cup (1,+\,\infty )\), and this occurs if and only if \( \mathscr {R}(A)=\mathscr {R}(A^\alpha ) \) for all \(\alpha \in (0,1)\cup (1,+\,\infty )\). As an application, we prove that for an adjontable operator A if \(\mathscr {R}(A)\) is nonclosed, then \(\dim \left( \overline{\mathscr {R}(A)}/\mathscr {R}(A)\right) =+\,\infty \). Finally, we show that for an adjointable operator A if \( \overline{\mathscr {R}(A^*) } \) is orthogonally complemented in \( \mathscr {E} \), then under certain coditions there exists an idempotent C and a unique operator X such that \( XAX=X, AXA=CA, AX=C \) and \( XA=P_{A^*} \), where \( P_{A^*} \) is the orthogonal projection of \( \mathscr {E} \) onto \( \overline{\mathscr {R}(A^*)}\).  相似文献   

3.
Let \(X=\mathscr {J}(\widetilde{\mathscr {C}})\), the Jacobian of a genus 2 curve \(\widetilde{\mathscr {C}}\) over \({\mathbb {C}}\), and let Y be the associated Kummer surface. Consider an ample line bundle \(L=\mathscr {O}(m\widetilde{\mathscr {C}})\) on X for an even number m, and its descent to Y, say \(L'\). We show that any dominating component of \({\mathscr {W}}^1_{d}(|L'|)\) corresponds to \(\mu _{L'}\)-stable Lazarsfeld–Mukai bundles on Y. Further, for a smooth curve \(C\in |L|\) and a base-point free \(g^1_d\) on C, say (AV), we study the \(\mu _L\)-semistability of the rank-2 Lazarsfeld–Mukai bundle associated to (C, (AV)) on X. Under certain assumptions on C and the \(g^1_d\), we show that the above Lazarsfeld–Mukai bundles are \(\mu _L\)-semistable.  相似文献   

4.
We consider some problems of spectral analysis and spectral synthesis in the topological vector space \({{\mathcal {M}}}(G)\) of tempered functions on a discrete Abelian group G. It is proved that spectral analysis holds in the space \({{\mathcal {M}}}(G)\) on every Abelian group G, that is, every nonzero closed linear translation invariant subspace of \({{\mathcal {M}}}(G)\) contains an exponential. For any finitely generated Abelian group G it is proved, that spectral synthesis holds in \({{\mathcal {M}}}(G)\), that is, every closed linear translation invariant subspace \({{\mathscr {H}}}\) of \({{\mathcal {M}}}(G)\) coincides with the closed linear span of all exponential monomials belonging to \({{\mathscr {H}}}\). For any Abelian group G with infinite torsion free rank it is proved that spectral synthesis fails to hold in the space \({{\mathcal {M}}}(G)\).  相似文献   

5.
Let M be a closed and connected manifold, \(H:T^*M\times {{\mathbb {R}}}/\mathbb {Z}\rightarrow \mathbb {R}\) a Tonelli 1-periodic Hamiltonian and \({\mathscr {L}}\subset T^*M\) a Lagrangian submanifold Hamiltonianly isotopic to the zero section. We prove that if \({\mathscr {L}}\) is invariant by the time-one map of H, then \({\mathscr {L}}\) is a graph over M. An interesting consequence in the autonomous case is that in this case, \({\mathscr {L}}\) is invariant by all the time t maps of the Hamiltonian flow of H.  相似文献   

6.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

7.
We study the collection of finite elements \(\Phi _{1}\big ({\mathcal {U}}(E,F)\big )\) in the vector lattice \({\mathcal {U}}(E,F)\) of orthogonally additive, order bounded (called abstract Uryson) operators between two vector lattices E and F, where F is Dedekind complete. In particular, for an atomic vector lattice E it is proved that for a finite element in \(\varphi \in {\mathcal {U}}(E,{\mathbb {R}})\) there is only a finite set of mutually disjoint atoms, where \(\varphi \) does not vanish and, for an atomless vector lattice the zero-vector is the only finite element in the band of \(\sigma \)-laterally continuous abstract Uryson functionals. We also describe the ideal \(\Phi _{1}\big ({\mathcal {U}}({\mathbb {R}}^n,{\mathbb {R}}^m)\big )\) for \(n,m\in {\mathbb {N}}\) and consider rank one operators to be finite elements in \({\mathcal {U}}(E,F)\).  相似文献   

8.
Let k be an odd positive integer, L a lattice on a regular positive definite k-dimensional quadratic space over \(\mathbb {Q}\), \(N_L\) the level of L, and \(\mathscr {M}(L)\)  be the linear space of \(\theta \)-series attached to the distinct classes in the genus of L. We prove that, for an odd prime \(p|N_L\), if \(L_p=L_{p,1}\,\bot \, L_{p,2}\), where \(L_{p,1}\) is unimodular, \(L_{p,2}\) is (p)-modular, and \(\mathbb {Q}_pL_{p,2}\) is anisotropic, then \(\mathscr {M}(L;p):=\) \(\mathscr {M}(L)\) \(+T_{p^2}.\) \(\mathscr {M}(L)\)  is stable under the Hecke operator \(T_{p^2}\). If \(L_2\) is isometric to \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle 2\varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}1\\ 1&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) with \(\varepsilon \in \mathbb {Z}_2^{\times }\) and \(\kappa :=\frac{k-1}{2}\), then \(\mathscr {M}(L;2):=T_{2^2}.\mathscr {M}(L)+T_{2^2}^2.\,\mathscr {M}(L)\) is stable under the Hecke operator \(T_{2^2}\). Furthermore, we determine some invariant subspaces of the cusp forms for the Hecke operators.  相似文献   

9.
Let k be a field of characteristic zero. Let V be a k-scheme of finite type, i.e., a k-variety, which is integral. We prove that if the associated arc scheme \({\mathcal{L}_{\infty}(V)}\) is reduced, then the \({\mathcal{O}_{V}}\)-Module \({\Omega_{V/k}^{1}}\) is torsion-free. Then if the k-variety V is assumed to be locally a complete intersection (lci), we deduce that the k-variety V is normal. We also obtain the following consequence: for every class \({\mathfrak{C}}\) of integral k-curves which satisfies the Berger conjecture, and for every \({\mathscr{C} \in \mathfrak{C}}\), the k-curve \({\mathscr{C}}\) is smooth if and only if \({\mathcal{L}(\mathscr{C})}\) is reduced.  相似文献   

10.
Let \({\mathscr {N}}\) be a 2-step nilpotent Lie algebra endowed with a non-degenerate scalar product \(\langle .\,,.\rangle \), and let \({\mathscr {N}}=V\oplus _{\perp }Z\), where Z is the centre of the Lie algebra and V its orthogonal complement. We study classification of the Lie algebras for which the space V arises as a representation space of the Clifford algebra \({{\mathrm{{\mathrm{Cl}}}}}({\mathbb {R}}^{r,s})\), and the representation map \(J:{{\mathrm{{\mathrm{Cl}}}}}({\mathbb {R}}^{r,s})\rightarrow {{\mathrm{End}}}(V)\) is related to the Lie algebra structure by \(\langle J_zv,w\rangle =\langle z,[v,w]\rangle \) for all \(z\in {\mathbb {R}}^{r,s}\) and \(v,w\in V\). The classification depends on parameters r and s and is completed for the Clifford modules V having minimal possible dimension, that are not necessary irreducible. We find necessary conditions for the existence of a Lie algebra isomorphism according to the range of the integer parameters \(0\le r,s<\infty \). We present a constructive proof for the isomorphism maps for isomorphic Lie algebras and determine the class of non-isomorphic Lie algebras.  相似文献   

11.
Let \({\mathbb {F}}\) be a field, V a vector space of dimension n over \({\mathbb {F}}\). Then the set of bilinear forms on V forms a vector space of dimension \(n^2\) over \({\mathbb {F}}\). For char \({\mathbb {F}}\ne 2\), if T is an invertible linear map from V onto V then the set of T-invariant bilinear forms, forms a subspace of this space of forms. In this paper, we compute the dimension of T-invariant bilinear forms over \({\mathbb {F}}\). Also we investigate similar type of questions for the infinitesimally T-invariant bilinear forms (T-skew symmetric forms). Moreover, we discuss the existence of nondegenerate invariant (resp. infinitesimally invariant) bilinear forms.  相似文献   

12.
Denote by \({{\mathcal {G}}}_k(V)\) the Grassmannian of the k-subspaces of a vector space V over a field \({\mathbb {K}}\). There is a natural correspondence between hyperplanes H of \({\mathcal {G}}_k(V)\) and alternating k-linear forms on V defined up to a scalar multiple. Given a hyperplane H of \({{\mathcal {G}}_k}(V)\), we define a subspace \(R^{\uparrow }(H)\) of \({{\mathcal {G}}_{k-1}}(V)\) whose elements are the \((k-1)\)-subspaces A such that all k-spaces containing A belong to H. When \(n-k\) is even, \(R^{\uparrow }(H)\) might be empty; when \(n-k\) is odd, each element of \({\mathcal {G}}_{k-2}(V)\) is contained in at least one element of \(R^{\uparrow }(H)\). In the present paper, we investigate several properties of \(R^{\uparrow }(H)\), settle some open problems and propose a conjecture.  相似文献   

13.
Let M be a stratum of a compact stratified space A. It is equipped with a general adapted metric g, which is slightly more general than the adapted metrics of Nagase and Brasselet–Hector–Saralegi. In particular, g has a general type, which is an extension of the type of an adapted metric. A restriction on this general type is assumed, and then, g is called good. We consider the maximum/minimum ideal boundary condition, \(d_{\mathrm{max/min}}\), of the compactly supported de Rham complex on M, in the sense of Brüning–Lesch. Let \(H^*_{\mathrm{max/min}}(M)\) and \(\Delta _{\mathrm{max/min}}\) denote the cohomology and Laplacian of \(d_{\mathrm{max/min}}\). The first main theorem states that \(\Delta _{\mathrm{max/min}}\) has a discrete spectrum satisfying a weak form of the Weyl’s asymptotic formula. The second main theorem is a version of Morse inequalities using \(H_{\mathrm{max/min}}^*(M)\) and what we call rel-Morse functions. An ingredient of the proofs of both theorems is a version for \(d_{\mathrm{max/min}}\) of the Witten’s perturbation of the de Rham complex. Another ingredient is certain perturbation of the Dunkl harmonic oscillator previously studied by the authors using classical perturbation theory. The condition on g to be good is general enough in the following sense. Assume that A is a stratified pseudomanifold, and consider its intersection homology \(I^{\bar{p}}H_*(A)\) with perversity \(\bar{p}\); in particular, the lower and upper middle perversities are denoted by \(\bar{m}\) and \(\bar{n}\), respectively. Then, for any perversity \(\bar{p}\le \bar{m}\), there is an associated good adapted metric on M satisfying the Nagase isomorphism \(H^r_{\mathrm{max}}(M)\cong I^{\bar{p}}H_r(A)^*\) (\(r\in \mathbb {N}\)). If M is oriented and \(\bar{p}\ge \bar{n}\), we also get \(H^r_{\mathrm{min}}(M)\cong I^{\bar{p}}H_r(A)\). Thus our version of the Morse inequalities can be described in terms of \(I^{\bar{p}}H_*(A)\).  相似文献   

14.
In classical topology, it is proved that for a topological space X, every bounded Riesz map \(\varphi :C (X) \rightarrow {\mathbb {R}}\) is of the from \({\hat{x}}\) for a point \(x\in X\). In this paper, our main purpose is to prove a version of this result by lattice-valued maps. A ring representation of the from \(A\rightarrow {\mathbb {R}}\) is constructed. This representation is denoted by \(\widetilde{p_c}\) that is an onto f-ring homomorphism for every \(p\in \Sigma L\), where its index c, denotes a cozero lattice-valued map. Also, it is shown that for every Riesz map \(\phi :A\rightarrow {\mathbb {R}} \) and \(c\in F(A, L)\) with specific properties, there exists \(p\in \Sigma L\) such that \(\phi =\phi (1)\widetilde{p_c}\).  相似文献   

15.
To every nonlinear differential expression there corresponds the so-called natural domain of definition. Usually, such a domain consists of Sobolev functions, sometimes with additional geometric constraints. There are, however, special nonlinear differential expressions (Jacobian determinants, div-curl products, etc.) whose special properties (higher integrability, weak-continuity, etc.) cannot be detected within their natural domain. We must consider them in a slightly larger class of functions. The grand Lebesgue space, denoted by \(\mathscr {L}^{p})(\mathbb X)\), and the corresponding grand Sobolev space \(\mathscr {W}^{1,p})(\mathbb X)\), turn out to be most effective. They were studied by many authors, largely in analogy with the questions concerning \(\mathscr {L}^p (\mathbb X)\) and \(\mathscr {W}^{1,p}(\mathbb X)\) spaces. The present paper is a continuation of these studies. We take on stage the grand p-harmonic energy integrals. These variational functionals involve both one-parameter family of integral averages and supremum with respect to the parameter. It is for this reason that the existence and uniqueness of the grand p-harmonic minimal mappings becomes a new (rather challenging) problem.  相似文献   

16.
We study the higher gradient integrability of distributional solutions u to the equation \({{\mathrm{div}}}(\sigma \nabla u) = 0\) in dimension two, in the case when the essential range of \(\sigma \) consists of only two elliptic matrices, i.e., \(\sigma \in \{\sigma _1, \sigma _2\}\) a.e. in \(\Omega \). In Nesi et al. (Ann Inst H Poincaré Anal Non Linéaire 31(3):615–638, 2014), for every pair of elliptic matrices \(\sigma _1\) and \(\sigma _2\), exponents \(p_{\sigma _1,\sigma _2}\in (2,+\infty )\) and \(q_{\sigma _1,\sigma _2}\in (1,2)\) have been found so that if \(u\in W^{1,q_{\sigma _1,\sigma _2}}(\Omega )\) is solution to the elliptic equation then \(\nabla u\in L^{p_{\sigma _1,\sigma _2}}_{\mathrm{weak}}(\Omega )\) and the optimality of the upper exponent \(p_{\sigma _1,\sigma _2}\) has been proved. In this paper we complement the above result by proving the optimality of the lower exponent \(q_{\sigma _1,\sigma _2}\). Precisely, we show that for every arbitrarily small \(\delta \), one can find a particular microgeometry, i.e., an arrangement of the sets \(\sigma ^{-1}(\sigma _1)\) and \(\sigma ^{-1}(\sigma _2)\), for which there exists a solution u to the corresponding elliptic equation such that \(\nabla u \in L^{q_{\sigma _1,\sigma _2}-\delta }\), but \(\nabla u \notin L^{q_{\sigma _1,\sigma _2}}\). The existence of such optimal microgeometries is achieved by convex integration methods, adapting to the present setting the geometric constructions provided in Astala et al. (Ann Scuola Norm Sup Pisa Cl Sci 5(7):1–50, 2008) for the isotropic case.  相似文献   

17.
Let \(n \ge r \ge s \ge 0\) be integers and \(\mathcal {F}\) a family of r-subsets of [n]. Let \(W_{r,s}^{\mathcal {F}}\) be the higher inclusion matrix of the subsets in \({{\mathcal {F}}}\) vs. the s-subsets of [n]. When \(\mathcal {F}\) consists of all r-subsets of [n], we shall simply write \(W_{r,s}\) in place of \(W_{r,s}^{\mathcal {F}}\). In this paper we prove that the rank of the higher inclusion matrix \(W_{r,s}\) over an arbitrary field K is resilient. That is, if the size of \(\mathcal {F}\) is “close” to \({n \atopwithdelims ()r}\) then \({{\mathrm{rank}}}_{K}( W_{r,s}^{\mathcal {F}}) = {{\mathrm{rank}}}_{K}(W_{r,s})\), where K is an arbitrary field. Furthermore, we prove that the rank (over a field K) of the higher inclusion matrix of r-subspaces vs. s-subspaces of an n-dimensional vector space over \({\mathbb {F}}_q\) is also resilient if \(\mathrm{char}(K)\) is coprime to q.  相似文献   

18.
Let M be a left R-module, \({\mathcal{A}}\)be a family of some submodules of M and \({\mathcal{B}}\)be a family of some left R-modules. In this article, we introduce and characterize \({\mathcal{A}}\)-coherent, \({P\mathcal{A}}\), \({F\mathcal{A}}\), M-\({\mathcal{A}}\)-injective (flat) and strongly \({\mathcal{B}}\)-injective (flat) modules, which are generalizations of coherent, PS, FS, M-injective (flat) and strongly M-injective modules, respectively. We extend some known results to this general structure.  相似文献   

19.
Let \({\mathcal{L}(X)}\) be the algebra of all bounded operators on a Banach space X. \({\theta:G\rightarrow \mathcal{L}(X)}\) denotes a strongly continuous representation of a topological abelian group G on X. Set \({\sigma^1(\theta(g)):=\{\lambda/|\lambda|,\lambda\in\sigma(\theta(g))\}}\), where σ(θ(g)) is the spectrum of θ(g) and \({\Sigma:=\{g\in G/\enskip\text{there is no} \enskip P\in \mathcal{P}/P\subseteq \sigma^1(\theta(g))\}}\), where \({\mathcal{P}}\) is the set of regular polygons of \({\mathbb{T}}\) (we call polygon in \({\mathbb{T}}\) the image by a rotation of a closed subgroup of \({\mathbb{T}}\), the unit circle of \({\mathbb{C}}\)). We prove here that if G is a locally compact and second countable abelian group, then θ is uniformly continuous if and only if Σ is non-meager.  相似文献   

20.
Let H be a digraph possibly with loops and D a finite digraph without loops whose arcs are coloured with the vertices of H (D is an H-coloured digraph). The sets V(D) and A(D) will denote the sets of vertices and arcs of D respectively. A directed path W in D is an H-path if and only if the consecutive colors encountered on W form a directed walk in H. A set \(N\subseteq \hbox {V}(D)\) is an H-kernel if for every pair of different vertices in N there is no H-path between them, and for every vertex \(u\in \hbox {V}(D){\setminus }N\) there exists an H-path in D from u to N. Let D be an m-coloured digraph. The color-class digraph of D, denoted by \({\mathscr {C}}_C(D\)), is the digraph such that: the vertices of the color-class digraph are the colors represented in the arcs of D, and \((i,j) \in A({\mathscr {C}}_C(D\))) if and only if there exist two arcs namely (uv) and (vw) in D such that (uv) has color i and (vw) has color j. Let \(W=(v_0, \ldots , v_n\)) be a directed walk in \({\mathscr {C}}_C(D)\), with D an H-coloured digraph, and \(e_i = (v_{i},v_{i+1})\) for each \(i \in \{0, \ldots ,n-1\}\). Let \(I = \{i_1, \ldots , i_k\}\) a subset of \(\{0, \ldots , n-1\}\) such that for 0 \(\le s \le n-1\), \(e_s \in \hbox { A}(H^c)\) if and only if \(s \in I\) (where \(H^c\) is the complement of H), then we will say that k is the \(H^c\)-length of W. Since V(\({\mathscr {C}}_C(D)) \subseteq \hbox {V}(H)\), the main question is: What structural properties of \({\mathscr {C}}_C(D)\), with respect to H, imply that D has an H-kernel? In this paper we will prove the following: If \({\mathscr {C}}_C(D)\) does not have directed cycles of odd \(H^c\)-length, then D has an H-kernel. Finally we will prove Richardson’s theorem as a direct consequence of the previous result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号