首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we first discuss the geometric properties of the Lorentz cone and the extended Lorentz cone. The self-duality and orthogonality of the Lorentz cone are obtained in Hilbert spaces. These properties are fundamental for the isotonicity of the metric projection with respect to the order, induced by the Lorentz cone. According to the Lorentz cone, the quasi-sublattice and the extended Lorentz cone are defined. We also obtain the representation of the metric projection onto cones in Hilbert quasi-lattices. As an application, solutions of the classic variational inequality problem and the complementarity problem are found by the Picard iteration corresponding to the composition of the isotone metric projection onto the defining closed and convex set and the difference in the identity mapping and the defining mapping. Our results generalize and improve various recent results obtained by many others.  相似文献   

2.
《Optimization》2012,61(8):1117-1121
The subdual latticial cones in Hilbert spaces are characterized by the isotonicity of a generalization of the positive part mapping which can be expressed in terms of the metric projection only. Although Németh characterized the positive cone of Hilbert lattices with the metric projection and ordering only [A.B. Németh, Characterization of a Hilbert vector lattice by the metric projection onto its positive cone, J. Approx. Theory 123 (2) (2003), pp. 295–299.], this has been done for the first time for subdual latticial cones in this article. We also note that the normal generating pointed closed convex cones for which the projection onto the cone is isotone are subdual latticial cones, but there are subdual latticial cones for which the metric projection onto the cone is not isotone [G. Isac, A.B. Németh, Monotonicity of metric projections onto positive cones of ordered Euclidean spaces, Arch. Math. 46 (6) (1986), pp. 568–576; G. Isac, A.B. Néemeth, Every generating isotone projection cone is latticial and correct, J. Math. Anal. Appl. 147 (1) (1990), pp. 53–62; G. Isac, A.B. Németh, Isotone projection cones in Hilbert spaces and the complementarity problem, Boll. Un. Mat. Ital. B 7 (4) (1990), pp. 773–802; G. Isac, A.B. Németh, Projection methods, isotone projection cones, and the complementarity problem, J. Math. Anal. Appl. 153 (1) (1990), pp. 258–275; G. Isac, A.B. Németh, Isotone projection cones in Eucliden spaces, Ann. Sci. Math Québec 16 (1) (1992), pp. 35–52].  相似文献   

3.
A mapping is called isotone if it is monotone increasing with respect to the order defined by a pointed closed convex cone. Finding the pointed closed convex generating cones for which the projection mapping onto the cone is isotone is a difficult problem which was analyzed in [1, 2, 3, 4, 5]. Such cones are called isotone projection cones. In particular it was shown that any isotone projection cone is latticial [2]. This problem is extended by replacing the projection mapping with a continuous isotone retraction onto the cone. By introducing the notion of sharp mappings, it is shown that a pointed closed convex generating cone is latticial if and only if there is a continuous isotone retraction onto the cone whose complement is sharp. This result is used for characterizing a subdual latticial cone by the isotonicity of a generalization of the positive part mapping xx +. This generalization is achieved by generalizing the infimum for subdual cones. The theoretical results of this paper exhibit fundamental properties of the lattice structure of the space which were not analysed before.  相似文献   

4.
Conditions for the non-existence of a regular exceptional family of elements with respect to an isotone projection cone in a Hilbert space will be presented. The obtained results will be used for generating existence theorems for a complementarity problem with respect to an isotone projection cone in a Hilbert space.  相似文献   

5.
In this paper we extend the notion of a Lorentz cone in a Euclidean space as follows: we divide the index set corresponding to the coordinates of points in two disjoint classes. By definition a point belongs to an extended Lorentz cone associated with this division, if the coordinates corresponding to one class are at least as large as the norm of the vector formed by the coordinates corresponding to the other class. We call a closed convex set isotone projection set with respect to a pointed closed convex cone if the projection onto the set is isotone (i.e., order preserving) with respect to the partial order defined by the cone. We determine the isotone projection sets with respect to an extended Lorentz cone. In particular, a Cartesian product between an Euclidean space and any closed convex set in another Euclidean space is such a set. We use this property to find solutions of general mixed complementarity problems recursively.  相似文献   

6.
By using some lattice-like operations which constitute extensions of ones introduced by M.S. Gowda, R. Sznajder and J. Tao for self-dual cones, a new perspective is gained on the subject of isotonicity of the metric projection onto the closed convex sets. The results of this paper are wide range generalizations of some results of the authors obtained for self-dual cones. The aim of the subsequent investigations is to put into evidence some closed convex sets for which the metric projection is isotonic with respect to the order relation which give rise to the above mentioned lattice-like operations. The topic is related to variational inequalities where the isotonicity of the metric projection is an important technical tool. For Euclidean sublattices this approach was considered by G. Isac and respectively by H. Nishimura and E.A. Ok.  相似文献   

7.
A mapping is called isotone if it is monotone increasing with respect to the order induced by a pointed closed convex cone. Finding the pointed closed convex generating cones for which the projection mapping onto the cone is isotone is a difficult problem which was analyzed in Isac and Németh (1986, 1990, 1992) [1], [2], [3], [4] and [5]. Such cones are called isotone projection cones. In particular it was shown that any isotone projection cone is latticial (Isac (1990) [2]). This problem is extended by replacing the projection mapping with continuous retractions onto the cone. By introducing the notion of sharp mappings, it is shown that a pointed closed convex generating cone is latticial if and only if there is a continuous retraction onto the cone whose complement is sharp. Several particular cases are considered and examples are given.  相似文献   

8.
In this paper, we discuss isotonicity characterizations of the metric projection operator, including its necessary and sufficient conditions for isotonicity onto sublattices in Banach spaces. Then, we demonstrate their applications to variational inequalities and fixed point theory in Banach spaces. Our work generalizes many existing results obtained in earlier work.  相似文献   

9.
《Optimization》2012,61(6):765-778
Isac and Németh [G. Isac and A. B. Németh, Projection methods, isotone projection cones and the complementarity problem, J. Math. Anal. Appl. 153 (1990), pp. 258–275] proved that solving a coincidence point equation (fixed point problem) in turn solves the corresponding implicit complementarity problem (nonlinear complementarity problem) and they exploited the isotonicity of the metric projection onto isotone projection cones to solve implicit complementarity problems (nonlinear complementarity problems) defined by these cones. In this article an iterative algorithm is studied in connection with an implicit complementarity problem. It is proved that if the sequence generated through the defined algorithm is convergent, then its limit is a solution of the coincidence point equation and thus solves the implicit complementarity problem. Sufficient conditions are given for this sequence to be convergent for implicit complementarity problems defined by isotone projection cones, extending the results of Németh [S.Z. Németh, Iterative methods for nonlinear complementarity problems on isotone projection cones, J. Math. Anal. Appl. 350 (2009), pp. 340–370]. Some existing concepts from the latter paper are extended to solve the problem of finding nonzero solutions of the implicit complementarity problem.  相似文献   

10.
The isotone projection cone, defined by G. Isac and A. B. Németh, is a closed pointed convex cone such that the order relation defined by the cone is preserved by the projection operator onto the cone. In this paper the coisotone cone will be defined as the polar of a generating isotone projection cone. Several equivalent inequality conditions for the coisotonicity of a cone in Euclidean spaces will be given. Thanks are due to A. B. Németh who draw the author’s attention on the relation of latticial cones generated by vectors with pairwise non-accute angles with the theory of isotone cones.  相似文献   

11.
The solution of the complementarity problem defined by a mapping f:RnRn and a cone KRn consists of finding the fixed points of the operator PK°(I-f), where PK is the projection onto the cone K and I stands for the identity mapping. For the class of isotone projection cones (cones admitting projections isotone with respect to the order relation they generate) and f satisfying certain monotonicity properties, the solution can be obtained by iterative processes (see G. Isac, A.B. Németh, Projection methods, isotone projection cones, and the complementarity problem, J. Math. Anal. Appl. 153(1) (1990) 258-275 and S.Z. Németh, Iterative methods for nonlinear complementarity problems on isotone projection cones, J. Math. Anal. Appl. 350(1) (2009) 340-347). These algorithms require computing at each step the projection onto the cone K. In general, computing the projection mapping onto a cone K is a difficult and computationally expensive problem. In this note it is shown that the projection of an arbitrary point onto an isotone projection cone in Rn can be obtained by projecting recursively at most n-1 times into subspaces of decreasing dimension. This emphasizes the efficiency of the algorithms mentioned above and furnishes a handy tool for some problems involving special isotone projection cones, as for example the non-negative monotone cones occurring in reconstruction problems (see e.g. Section 5.13 in J. Dattorro, Convex Optimization and Euclidean Distance Geometry, Meboo, 2005, v2009.04.11).  相似文献   

12.
Isac and Németh [G. Isac and A. B. Németh, Projection method, isotone projection cones and the complementarity problem, J. Math. Anal. App., 153, 258-275(1990)] proved that solving a coincidence point equation (fixed point problem) in turn solves the corresponding implicit complementarity problem (nonlinear complementarity problem) and they exploited the isotonicity of the metric projection onto isotone projection cones to solve implicit complementarity problems (nonlinear complementarity problems) defined by these cones. In this paper, the notion of *-isotone projection cones is employed and an iterative algorithm is presented in connection with an implicit complementarity problem on *-isotone projection cones. It is proved that if the sequence generated through the defined algorithm is convergent, then its limit is a solution of the coincidence point equation and thus solves the implicit complementarity problem. Sufficient conditions are given for this sequence to be convergent for implicit complementarity problems defined by *-isotone projection cones. The question of finding nonzero solutions of these problems is also studied.  相似文献   

13.
In this paper we present a recursion related to a nonlinear complementarity problem defined by a closed convex cone in a Hilbert space and a continuous mapping defined on the cone. If the recursion is convergent, then its limit is a solution of the nonlinear complementarity problem. In the case of isotone projection cones sufficient conditions are given for the mapping so that the recursion to be convergent.  相似文献   

14.
《Optimization》2012,61(9):1087-1098
This article extends the notion of isotone projection cones to generalized isotone projection cones by replacing the usual metric projection with a generalized one. It is shown that all such cones are simplicial.  相似文献   

15.
Jinlu Li 《Optimization》2018,67(5):565-583
In this paper, we introduce the concept of isotone cones in Banach spaces. Then, we apply the order monotonic property of the metric projection operator to prove the existence of best approximations for some operators without continuity conditions in partially ordered Banach spaces.  相似文献   

16.
In this paper some concepts of convex analysis are extended in an intrinsic way from the Euclidean space to the sphere. In particular, relations between convex sets in the sphere and pointed convex cones are presented. Several characterizations of the usual projection onto a Euclidean convex set are extended to the sphere and an extension of Moreau’s theorem for projection onto a pointed convex cone is exhibited.  相似文献   

17.
Shin-ya Matsushita  Li Xu 《Optimization》2016,65(11):2037-2047
In this paper we apply the Douglas–Rachford (DR) method to solve the problem of finding a point in the intersection of the interior of a closed convex cone and a closed convex set in an infinite-dimensional Hilbert space. For this purpose, we propose two variants of the DR method which can find a point in the intersection in a finite number of iterations. In order to analyse the finite termination of the methods, we use some properties of the metric projection and a result regarding the rate of convergence of fixed point iterations. As applications of the results, we propose the methods for solving the conic and semidefinite feasibility problems, which terminate at a solution in a finite number of iterations.  相似文献   

18.
Yu introduced Property A on discrete metric spaces. In this paper, a relative Property A for a discrete metric space X with respect to a set Y and a map ρ_(X,Y) is defined. Some characterizations for relative Property A are given. In particular, a discrete metric space with relative Property A can be coarse embedding into a Hilbert space under certain condition.  相似文献   

19.
We study the dynamics of fixed point free mappings on the interior of a normal, closed cone in a Banach space that are nonexpansive with respect to Hilbert’s metric or Thompson’s metric. We establish several Denjoy-Wolff type theorems which confirm conjectures by Karlsson and Nussbaum for an important class of nonexpansive mappings. We also extend and put into a broader perspective results by Gaubert and Vigeral concerning the linear escape rate of such nonexpansive mappings.  相似文献   

20.
Using some equivalent characterizations of Bouligand's tangent cone in metric vector spaces, several properties of the tangent derivative of correspondences between metric vector spaces are derived. These results are applied for the sensitivity analysis of a parametrized vector optimization problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号