首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compute the \({\mathbb {Z}}\)-rank of the subgroup \(\widetilde{E}_K =\bigcap _{n\in {\mathbb {N}}} N_{K_n/K}(K_n^\times )\) of elements of the multiplicative group of a number field K that are norms from every finite level of the cyclotomic \({\mathbb {Z}}_\ell \)-extension \(K^c\) of K. Thus we compare its \(\ell \)-adification \({\mathbb {Z}}_\ell \otimes _{\mathbb {Z}}\widetilde{E}_K\) with the group of logarithmic units \(\widetilde{\varepsilon }_K\). By the way we point out an easy proof of the Gross–Kuz’min conjecture for \(\ell \)-undecomposed extensions of abelian fields.  相似文献   

2.
Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).  相似文献   

3.
Given a partition \(\lambda \) of n, the Schur functor \({\mathbb {S}}_\lambda \) associates to any complex vector space V, a subspace \({\mathbb {S}}_\lambda (V)\) of \(V^{\otimes n}\). Hermite’s reciprocity law, in terms of the Schur functor, states that \({\mathbb {S}}_{(p)}\left( {\mathbb {S}}_{(q)}({\mathbb {C}}^2)\right) \simeq {\mathbb {S}}_{(q)}\left( {\mathbb {S}}_{(p)}({\mathbb {C}}^2)\right) . \) We extend this identity to many other identities of the type \({\mathbb {S}}_{\lambda }\left( {\mathbb {S}}_{\delta }({\mathbb {C}}^2)\right) \simeq {\mathbb {S}}_{\mu }\left( {\mathbb {S}}_{\epsilon }({\mathbb {C}}^2)\right) \).  相似文献   

4.
In this paper we study four-dimensional \((m,\rho )\)-quasi-Einstein manifolds with harmonic Weyl curvature when \(m\notin \{0,\pm 1,-2,\pm \infty \}\) and \(\rho \notin \{\frac{1}{4},\frac{1}{6}\}\). We prove that a non-trivial \((m,\rho )\)-quasi-Einstein metric g (not necessarily complete) is locally isometric to one of the following: (i) \({\mathcal {B}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {B}}^2_\frac{R}{2(m+2)}\) is the northern hemisphere in the two-dimensional (2D) sphere \({\mathbb {S}}^2_\frac{R}{2(m+2)}\), \({\mathbb {N}}_\delta \) is a 2D Riemannian manifold with constant curvature \(\delta \), and R is the constant scalar curvature of g. (ii) \({\mathcal {D}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {D}}^2_\frac{R}{2(m+2)}\) is half (cut by a hyperbolic line) of hyperbolic plane \({\mathbb {H}}^2_\frac{R}{2(m+2)}\). (iii) \({\mathbb {H}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\). (iv) A certain singular metric with \(\rho =0\). (v) A locally conformal flat metric. By applying this local classification, we obtain a classification of the complete \((m,\rho )\)-quasi-Einstein manifolds given the condition of a harmonic Weyl curvature. Our result can be viewed as a local classification of gradient Einstein-type manifolds. A corollary of our result is the classification of \((\lambda ,4+m)\)-Einstein manifolds, which can be viewed as (m, 0)-quasi-Einstein manifolds.  相似文献   

5.
6.
Let \({\mathbb {K}(\mathbb {R}^{d})}\) denote the cone of discrete Radon measures on \(\mathbb {R}^{d}\). There is a natural differentiation on \(\mathbb {K}(\mathbb {R}^{d})\): for a differentiable function \(F:\mathbb {K}(\mathbb {R}^{d})\to \mathbb {R}\), one defines its gradient \(\nabla ^{\mathbb {K}}F\) as a vector field which assigns to each \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) an element of a tangent space \(T_{\eta }(\mathbb {K}(\mathbb {R}^{d}))\) to \(\mathbb {K}(\mathbb {R}^{d})\) at point η. Let \(\phi :\mathbb {R}^{d}\times \mathbb {R}^{d}\to \mathbb {R}\) be a potential of pair interaction, and let μ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on \(\mathbb {R}^{d}\). In particular, μ is a probability measure on \(\mathbb {K}(\mathbb {R}^{d})\) such that the set of atoms of a discrete measure \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) is μ-a.s. dense in \(\mathbb {R}^{d}\). We consider the corresponding Dirichlet form
$$\mathcal{E}^{\mathbb{K}}(F,G)={\int}_{\mathbb K(\mathbb{R}^{d})}\langle\nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta)\rangle_{T_{\eta}(\mathbb{K})}\,d\mu(\eta). $$
Integrating by parts with respect to the measure μ, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If d ≥ 2, there exists a conservative diffusion process on \(\mathbb {K}(\mathbb {R}^{d})\) which is properly associated with the Dirichlet form \(\mathcal {E}^{\mathbb {K}}\).
  相似文献   

7.
We consider the model space \(\mathbb {M}^{n}_{K}\) of constant curvature K and dimension \(n\ge 1\) (Euclidean space for \(K=0\), sphere for \(K>0\) and hyperbolic space for \(K<0\)), and we show that given a function \(\rho :[0,\infty )\rightarrow [0, \infty )\) with \(\rho (0)=\mathrm {dist}(x,y)\) there exists a coadapted coupling (X(t), Y(t)) of Brownian motions on \(\mathbb {M}^{n}_{K}\) starting at (xy) such that \(\rho (t)=\mathrm {dist}(X(t),Y(t))\) for every \(t\ge 0\) if and only if \(\rho \) is continuous and satisfies for almost every \(t\ge 0\) the differential inequality
$$\begin{aligned} -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) \le \rho '(t)\le -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) +\tfrac{2(n-1)\sqrt{K}}{\sin (\sqrt{K}\rho (t))}. \end{aligned}$$
In other words, we characterize all coadapted couplings of Brownian motions on the model space \(\mathbb {M}^{n}_{K}\) for which the distance between the processes is deterministic. In addition, the construction of the coupling is explicit for every choice of \(\rho \) satisfying the above hypotheses.
  相似文献   

8.
Given \(\rho >0\), we study the elliptic problem
$$\begin{aligned} \text {find } (U,\lambda )\in H^1_0(\Omega )\times {\mathbb {R}}\text { such that } {\left\{ \begin{array}{ll} -\Delta U+\lambda U=|U|^{p-1}U\\ \int _{\Omega } U^2\, dx=\rho , \end{array}\right. } \end{aligned}$$
where \(\Omega \subset {\mathbb {R}}^N\) is a bounded domain and \(p>1\) is Sobolev-subcritical, searching for conditions (about \(\rho \), N and p) for the existence of solutions. By the Gagliardo-Nirenberg inequality it follows that, when p is \(L^2\)-subcritical, i.e. \(1<p<1+4/N\), the problem admits solutions for every \(\rho >0\). In the \(L^2\)-critical and supercritical case, i.e. when \(1+4/N \le p < 2^*-1\), we show that, for any \(k\in {\mathbb {N}}\), the problem admits solutions having Morse index bounded above by k only if \(\rho \) is sufficiently small. Next we provide existence results for certain ranges of \(\rho \), which can be estimated in terms of the Dirichlet eigenvalues of \(-\Delta \) in \(H^1_0(\Omega )\), extending to changing sign solutions and to general domains some results obtained in Noris et al. in Anal. PDE 7:1807–1838, 2014 for positive solutions in the ball.
  相似文献   

9.
We consider the stochastic differential equation (SDE) of the form
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{rcl} dX^ x(t) &=& \sigma(X(t-)) dL(t) \\ X^ x(0)&=&x,\quad x\in{\mathbb{R}}^ d, \end{array}\right. \end{array} $$
where \(\sigma :{\mathbb {R}}^ d\to {\mathbb {R}}^ d\) is globally Lipschitz continuous and L={L(t):t≥0} is a Lévy process. Under this condition on σ it is well known that the above problem has a unique solution X. Let \((\mathcal {P}_{t})_{t\ge 0}\) be the Markovian semigroup associated to X defined by \(\left ({\mathcal {P}}_{t} f\right ) (x) := \mathbb {E} \left [ f(X^ x(t))\right ]\), t≥0, \(x\in {\mathbb {R}}^{d}\), \(f\in \mathcal {B}_{b}({\mathbb {R}}^{d})\). Let B be a pseudo–differential operator characterized by its symbol q. Fix \(\rho \in \mathbb {R}\). In this article we investigate under which conditions on σ, L and q there exist two constants γ>0 and C>0 such that
$$\left| B {\mathcal{P}}_{t} u \right|_{H^{\rho}_{2}} \le C \, t^{-\gamma} \,\left| u \right|_{H^{\rho}_{2}}, \quad \forall u \in {H^{\rho}_{2}}(\mathbb{R}^{d} ),\, t>0. $$
  相似文献   

10.
In Advances in Mathematical Physics (2011) we showed that the weighted shift \(z^{p}\frac{d^{p+1}}{dz^{p+1}} (p=0, 1, 2,\ldots )\) acting on classical Bargmann space \(\mathbb {B}_{p}\) is chaotic operator. In Journal of Mathematical physics (2014), we constructed an chaotic weighted shift \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1} (p=0, 1, 2,\ldots )\) on some lattice Fock–Bargmann \(\mathbb {E}_{p}^{\alpha }\) generated by the orthonormal basis \( {e_{m}^{(\alpha ,p)}(z) = e_{m}^{\alpha } ; m=p, p+1,\ldots }\) where \( {e_{m}^{\alpha }(z) = (\frac{2\nu }{\pi })^{1/4}e^{\frac{\nu }{2}z^{2}}e^{-\frac{\pi ^{2}}{\nu }(m +\alpha )^{2} +2i\pi (m +\alpha )z}; m \in \mathbb {N}}\) with \(\nu , \alpha \) are real numbers; \(\nu > 0\), \(\mathbb {M}\) is an weighted shift and \(\mathbb {M^{*}}\) is the adjoint of the \(\mathbb {M}\). In this paper we study the chaoticity of tensor product \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1}\otimes z^{p}\frac{d^{p}}{dz^{p+1}} (p=0, 1, 2, \ldots )\) acting on \(\mathbb {E}_{p}^{\alpha }\otimes \mathbb {B}_{p}\).  相似文献   

11.
We consider the perturbed Schrödinger equation
$\left\{\begin{array}{ll}{- \varepsilon ^2 \Delta u + V(x)u = P(x)|u|^{p - 2} u + k(x)|u|^{2* - 2} u} &; {\text{for}}\, x \in {\mathbb{R}}^N\\ \qquad \qquad \quad {u(x) \rightarrow 0} &; \text{as}\, {|x| \rightarrow \infty} \end{array} \right.$
where \(N\geq 3, \ 2^*=2N/(N-2)\) is the Sobolev critical exponent, \(p\in (2, 2^*)\) , P(x) and K(x) are bounded positive functions. Under proper conditions on V we show that it has at least one positive solution provided that \(\varepsilon\leq{\mathcal{E}}\) ; for any \(m\in{\mathbb{N}}\) , it has m pairs of solutions if \(\varepsilon\leq{\mathcal{E}}_{m}\) ; and suppose there exists an orthogonal involution \(\tau:{\mathbb{R}}^{N}\to{\mathbb{R}}^{N}\) such that V(x), P(x) and K(x) are τ -invariant, then it has at least one pair of solutions which change sign exactly once provided that \(\varepsilon\leq{\mathcal{E}}\) , where \({\mathcal{E}}\) and \({\mathcal{E}}_{m}\) are sufficiently small positive numbers. Moreover, these solutions \(u_\varepsilon\to 0\) in \(H^1({\mathbb{R}}^N)\) as \(\varepsilon\to 0\) .
  相似文献   

12.
In this paper, we study the harmonic equation involving subcritical exponent \((P_{\varepsilon })\): \( \Delta u = 0 \), in \(\mathbb {B}^n\) and \(\displaystyle \frac{\partial u}{\partial \nu } + \displaystyle \frac{n-2}{2}u = \displaystyle \frac{n-2}{2} K u^{\frac{n}{n-2}-\varepsilon }\) on \( \mathbb {S}^{n-1}\) where \(\mathbb {B}^n \) is the unit ball in \(\mathbb {R}^n\), \(n\ge 5\) with Euclidean metric \(g_0\), \(\partial \mathbb {B}^n = \mathbb {S}^{n-1}\) is its boundary, K is a function on \(\mathbb {S}^{n-1}\) and \(\varepsilon \) is a small positive parameter. We construct solutions of the subcritical equation \((P_{\varepsilon })\) which blow up at two different critical points of K. Furthermore, we construct solutions of \((P_{\varepsilon })\) which have two bubbles and blow up at the same critical point of K.  相似文献   

13.
For any homogeneous ideal I in \(K[x_1,\ldots ,x_n]\) of analytic spread \(\ell \), we show that for the Rees algebra R(I), \({\text {reg}}_{(0,1)}^{\mathrm{syz}}(R(I))={\text {reg}}_{(0,1)}^{\mathrm{T}}(R(I))\). We compute a formula for the (0, 1)-regularity of R(I), which is a bigraded analog of Theorem 1.1 of Aramova and Herzog (Am. J. Math. 122(4) (2000) 689–719) and Theorem 2.2 of Römer (Ill. J. Math. 45(4) (2001) 1361–1376) to R(I). We show that if the defect sequence, \(e_k:= {\text {reg}}(I^k)-k\rho (I)\), is weakly increasing for \(k \ge {\text {reg}}^{\mathrm{syz}}_{(0,1)}(R(I))\), then \({\text {reg}}(I^j)=j\rho (I)+e\) for \(j \ge {\text {reg}}^{\mathrm{syz}}_{(0,1)}(R(I))+\ell \), where \(\ell ={\text {min}}\{\mu (J)~|~ J\subseteq I \text{ a } \text{ graded } \text{ minimal } \text{ reduction } \text{ of } I\}\). This is an improvement of Corollary 5.9(i) of [16].  相似文献   

14.
Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R~n×R~m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space H~φ_A(R~n× R~m) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the g_λ~*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of H~φ_A(R~n× R~m) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from H~φ_A(R~n× R~m) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from H~φ_A(R~n× R~m) to L~φ(R~n× R~m)and from H~φ_A(R~n×R~m) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on R~n× R~m and are new even for classical product Orlicz-Hardy spaces.  相似文献   

15.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

16.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

17.
Let C be a convex d-dimensional body. If \(\rho \) is a large positive number, then the dilated body \(\rho C\) contains \(\rho ^{d}\left| C\right| +\mathcal {O}\left( \rho ^{d-1}\right) \) integer points, where \(\left| C\right| \) denotes the volume of C. The above error estimate \(\mathcal {O}\left( \rho ^{d-1}\right) \) can be improved in several cases. We are interested in the \(L^{2}\)-discrepancy \(D_{C}(\rho )\) of a copy of \(\rho C\) thrown at random in \(\mathbb {R}^{d}\). More precisely, we consider where \(\mathbb {T}^{d}=\) \(\mathbb {R}^{d}/\mathbb {Z}^{d}\) is the d-dimensional flat torus and \(SO\left( d\right) \) is the special orthogonal group of real orthogonal matrices of determinant 1. An argument of Kendall shows that \(D_{C}(\rho )\le c\ \rho ^{(d-1)/2}\). If C also satisfies the reverse inequality \(\ D_{C}(\rho )\ge c_{1} \ \rho ^{(d-1)/2}\), we say that C is \(L^{2}\) -regular. Parnovski and Sobolev proved that, if \(d>1\), a d-dimensional unit ball is \(L^{2} \)-regular if and only if \(d\not \equiv 1\ ({\text {mod}}4)\). In this paper we characterize the \(L^{2}\)-regular convex polygons. More precisely, we prove that a convex polygon is not \(L^{2}\)-regular if and only if it can be inscribed in a circle and it is symmetric about the centre.
  相似文献   

18.
We give a sufficient condition on a Lévy measure μ which ensures that the generator L of the corresponding pure jump Lévy process is (locally) hypoelliptic, i.e., \(\mathop {\mathrm {sing\,supp}}u\subseteq \mathop {\mathrm {sing\,supp}}Lu\) for all admissible u. In particular, we assume that \(\mu|_{\mathbb {R}^{d}\setminus \{0\}}\in C^{\infty}(\mathbb {R}^{d}\setminus \{0\})\). We also show that this condition is necessary provided that \(\mathop {\mathrm {supp}}\mu\) is compact.  相似文献   

19.
We consider the problem
$$\begin{aligned} -\Delta u+\left( V_{\infty }+V(x)\right) u=|u|^{p-2}u,\quad u\in H_{0} ^{1}(\Omega ), \end{aligned}$$
where \(\Omega \) is either \(\mathbb {R}^{N}\) or a smooth domain in \(\mathbb {R} ^{N}\) with unbounded boundary, \(N\ge 3,\) \(V_{\infty }>0,\) \(V\in \mathcal {C} ^{0}(\mathbb {R}^{N}),\) \(\inf _{\mathbb {R}^{N}}V>-V_{\infty }\) and \(2<p<\frac{2N}{N-2}\). We assume V is periodic in the first m variables, and decays exponentially to zero in the remaining ones. We also assume that \(\Omega \) is periodic in the first m variables and has bounded complement in the other ones. Then, assuming that \(\Omega \) and V are invariant under some suitable group of symmetries on the last \(N-m\) coordinates of \(\mathbb {R}^{N}\), we establish existence and multiplicity of sign-changing solutions to this problem. We show that, under suitable assumptions, there is a combined effect of the number of periodic variables and the symmetries of the domain on the number of sign-changing solutions to this problem. This number is at least \(m+1\)
  相似文献   

20.
Let \(\mathbb {H}^{n}=\mathbb {C}^{n}\times \mathbb {R}\) be the n-dimensional Heisenberg group, \(Q=2n+2\) be the homogeneous dimension of \(\mathbb {H}^{n}\). We extend the well-known concentration-compactness principle on finite domains in the Euclidean spaces of Lions (Rev Mat Iberoam 1:145–201, 1985) to the setting of the Heisenberg group \(\mathbb {H}^{n}\). Furthermore, we also obtain the corresponding concentration-compactness principle for the Sobolev space \({ HW}^{1,Q}(\mathbb {H}^{n}) \) on the entire Heisenberg group \(\mathbb {H}^{n}\). Our results improve the sharp Trudinger–Moser inequality on domains of finite measure in \(\mathbb {H}^{n}\) by Cohn and Lu (Indiana Univ Math J 50(4):1567–1591, 2001) and the corresponding one on the whole space \(\mathbb {H}^n\) by Lam and Lu (Adv Math 231:3259–3287, 2012). All the proofs of the concentration-compactness principles for the Trudinger–Moser inequalities in the literature even in the Euclidean spaces use the rearrangement argument and the Polyá–Szegö inequality. Due to the absence of the Polyá–Szegö inequality on the Heisenberg group, we will develop a different argument. Our approach is surprisingly simple and general and can be easily applied to other settings where symmetrization argument does not work. As an application of the concentration-compactness principle, we establish the existence of ground state solutions for a class of Q- Laplacian subelliptic equations on \(\mathbb {H}^{n}\):
$$\begin{aligned} -\mathrm {div}\left( \left| \nabla _{\mathbb {H}}u\right| ^{Q-2} \nabla _{\mathbb {H}}u\right) +V(\xi ) \left| u\right| ^{Q-2}u=\frac{f(u) }{\rho (\xi )^{\beta }} \end{aligned}$$
with nonlinear terms f of maximal exponential growth \(\exp (\alpha t^{\frac{Q}{Q-1}})\) as \(t\rightarrow +\infty \). All the results proved in this paper hold on stratified groups with the same proofs. Our method in this paper also provide a new proof of the classical concentration-compactness principle for Trudinger-Moser inequalities in the Euclidean spaces without using the symmetrization argument.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号