首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
主要讨论基于开关控制的线性奇异系统的二次状态反馈镇定问题.利用二次反馈镇定的概念,给出了线性奇异系统基于异步开关控制的二次状态反馈镇定问题可解的两个充分条件.进一步,对于带有范数有界的不确定项的奇异线性系统,给出了其可以基于异步开关控制的二次状态反馈鲁棒镇定的可解性条件.  相似文献   

2.
In this paper via a novel method of discretized continuous-time Kalman filter, the problem of synchronization and cryptography in fractional-order systems has been investigated in presence of noisy environment for process and output signals. The fractional-order Kalman filter equation, applicable for linear systems, and its extension called the extended Kalman filter, which can be used for nonlinear systems, are derived. The result is utilized for chaos synchronization with the aim of cryptography while the transmitter system is fractional-order, and both the transmitter and transmission channel are noisy. The fractional-order stochastic chaotic Chen system is then presented to apply the proposed method for chaotic signal cryptography. The results show the effectiveness of the proposed method.  相似文献   

3.
This paper presents an optimal sliding mode output tracking control scheme for a class of fractional-order uncertain systems. Firstly, an augmented fractional-order system, composed of the original system and the external system, is constructed to transform the optimal output tracking issue into the design problem of linear quadratic regulator. The optimal tracking control problem for the nominal augmented fractional-order system is then studied. Secondly, the fractional-integral sliding mode controller is introduced to robustify the augmented fractional-order system, which satisfy the matching conditions. As a result, the original system output can track the external system output trajectory effectively even the uncertainties exist. Finally, the developed design techniques are applied to the tracking control of fractional-order permanent magnet synchronous motor. The simulation results demonstrate the validity of this approach.  相似文献   

4.
This paper investigates the projective synchronization (PS) of different fractional order chaotic systems while the derivative orders of the states in drive and response systems are unequal. Based on some essential properties on fractional calculus and the stability theorems of fractional-order systems, we propose a general method to achieve the PS in such cases. The fractional operators are introduced into the controller to transform the problem into synchronization problem between chaotic systems with identical orders, and the nonlinear feedback controller is proposed based on the concept of active control technique. The method is both theoretically rigorous and practically feasible. We present two examples that illustrate the effectiveness and applications of the method, which include the PS between two 3-D commensurate fractional-order chaotic systems and the PS between two 4-D fractional-order hyperchaotic systems with incommensurate and commensurate orders, respectively. Abundant numerical simulations are given which agree well with the analytical results. Our investigations show that PS can also be achieved between different chaotic systems with non-identical orders. We have further reviewed and compared some relevant methods on this topic reported in several recent papers. A discussion on the physical implementation of the proposed method is also presented in this paper.  相似文献   

5.
The article examines optimal synthesis methods for time-dependent deterministic systems with feedback (the regulator problem and the output problem). The linear problem is solved using the structure of optimal control. Nonlinear problems are reduced to the linear problem by linear and quadratic approximation. Existence and uniqueness theorems are stated and proved. The notion of generalized solution in dynamical programming is utilized.  相似文献   

6.
State-dependent Riccati equation (SDRE) techniques are rapidly emerging as general design and synthesis methods of nonlinear feedback controllers and estimators for a broad class of nonlinear regulator problems. In essence, the SDRE approach involves mimicking standard linear quadratic regulator (LQR) formulation for linear systems. In particular, the technique consists of using direct parameterization to bring the nonlinear system to a linear structure having state-dependent coefficient matrices. Theoretical advances have been made regarding the nonlinear regulator problem and the asymptotic stability properties of the system with full state feedback. However, there have not been any attempts at the theory regarding the asymptotic convergence of the estimator and the compensated system. This paper addresses these two issues as well as discussing numerical methods for approximating the solution to the SDRE. The Taylor series numerical methods works only for a certain class of systems, namely with constant control coefficient matrices, and only in small regions. The interpolation numerical method can be applied globally to a much larger class of systems. Examples will be provided to illustrate the effectiveness and potential of the SDRE technique for the design of nonlinear compensator-based feedback controllers.  相似文献   

7.
In this paper a class of linear time-varying control systems is considered. The time variation consists of a scalar time-varying coefficient multiplying the state matrix of an otherwise time-invariant system. Under very weak assumptions of this coefficient, we show that the controllability can be assessed by an algebraic rank condition, Kalman canonical decomposition is possible, and we give a method for designing a linear state-feedback controller and Luenberger observer.  相似文献   

8.
A general method for the control of linear time-periodic systems employing symbolic computation of Floquet transition matrix is considered in this work. It is shown that this method is applicable to chaos control. Nonlinear chaotic systems can be driven to a desired periodic motion by designing a combination of a feedforward controller and a feedback controller. The design of the feedback controller is achieved through the symbolic computation of fundamental solution matrix of linear time-periodic systems in terms of unknown control gains. Then, the Floquet transition matrix (state transition matrix evaluated at the end of the principal period) can determine the stability of the system owing to classical techniques such as pole placement, Routh–Hurwitz criteria, etc. Thus it is possible to place the Floquet multipliers in the desired locations to determine the control gains. This method can be applied to systems without small parameters. The Duffing’s oscillator, the Rössler system and the nonautonomous parametrically forced Lorenz equations are chosen as illustrative examples to demonstrate the application.  相似文献   

9.
The paper presents a new approach to model validation and fault diagnosis problems for a class of uncertain systems in which the uncertainty is described by an integral quadratic constraint. The new approach is developed by applying methods from linear quadratic optimal control theory. This leads to a method for model validation and fault diagnosis which is based around a robust Kalman filter type structure.  相似文献   

10.
In this work, stability analysis of the fractional-order Newton-Leipnik system is studied by using the fractional Routh-Hurwitz criteria. The fractional Routh-Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh-Hurwitz conditions and using specific choice of linear feedback controllers, it is shown that the Newton-Leipnik system is controlled to its equilibrium points. Moreover, the theoretical basis of hybird projective synchronization of commensurate and incommensurate fractional-order Newton-Leipnik systems is investigated. Based on the stability theorems of fractional-order systems, the controllers for hybrid projective synchroniztion are derived. Numerical results show the effectiveness of the theoretical analysis.  相似文献   

11.
The nonlinear filtering problem of estimating the state of a linear stochastic system from noisy observations is solved for a broad class of probability distributions of the initial state. It is shown that the conditional density of the present state, given the past observations, is a mixture of Gaussian distributions, and is parametrically determined by two sets of sufficient statistics which satisfy stochastic DEs; this result leads to a generalization of the Kalman–Bucy filter to a structure with a conditional mean vector, and additional sufficient statistics that obey nonlinear equations, and determine a generalized (random) Kalman gain. The theory is used to solve explicitly a control problem with quadratic running and terminal costs, and bounded controls.  相似文献   

12.
Power-series methods are developed for designing approximately optimal state regulators for a nonlinear system subject to white Gaussian random disturbances. The performance index of the control is an ensemble average of a quadratic form. A perfect observation of the system state is assumed. When the system nonlinearity is small and it is characterized by a polynomial function of the state, a definite method is presented to construct a suboptimal feedback control of a power-series form in a small nonlinearity parameter. If the variance of noise is small, an alternative method is also applicable which yields a suboptimal control in a power series with respect to a variance parameter. A simple one-dimensional problem is examined to make comparison between controls of the two different forms.  相似文献   

13.
基于虚拟完整约束的欠驱动起重机控制方法   总被引:1,自引:1,他引:0       下载免费PDF全文
欠驱动系统的控制是非线性控制的一个重要领域,欠驱动系统指系统控制输入个数小于自由度个数的非线性系统.目前,欠驱动非线性系统动力学和控制研究的主要方法包括线性二次型最优控制方法和部分反馈线性化方法等,如何使系统持续的稳定在平衡位置一直是研究的难点.虚拟约束方法是指通过选择一个周期循环变化的变量作为自变量来设计系统的周期运动.该文以典型的欠驱动模型起重机为例,采用虚拟约束方法,使系统能够在平衡位置稳定或周期振荡运动.首先,通过建立虚拟约束,减少系统自由度变量;然后,通过部分反馈线性化理论推导出系统的状态方程;最后,通过线性二次调节器设计反馈控制器.仿真结果表明,重物在反馈控制下可以在竖直位置的附近达到稳定状态,反映了虚拟约束方法对欠驱动系统的有效性.  相似文献   

14.
In this paper, a drive-response synchronization method with linear output error feedback is presented for synchronizing a class of fractional-order chaotic systems via a scalar transmitted signal. Based on stability theory of fractional-order systems and linear system theory, a necessary and sufficient condition for the existence of the feedback gain vector such that global synchronization between the fractional-order drive system and response system can be achieved and its design method are given. This synchronization approach that is simple, global and theoretically rigorous enables synchronization of fractional-order chaotic systems be achieved in a systematic way and does not require the computation of the conditional Lyapunov exponents. An example is used to illustrate the effectiveness of the proposed synchronization method.  相似文献   

15.
A minimax terminal state estimation problem is posed for a linear plant and a generalized quadratic loss function. Sufficient conditions are developed to insure that a Kalman filter will provide a minimax estimate for the terminal state of the plant. It is further shown that this Kalman filter will not generally be a minimax estimate for the terminal state if the observation interval is arbitrarily long. Consequently, a subminimax estimate is defined, subject to a particular existence condition. This subminimax estimate is related to the Kalman filter, and it may provide a useful estimate for the terminal state when the performance of the Kalman filter is no longer satisfactory.  相似文献   

16.
This paper presents an alternative on-line algorithm for calculating regulators of linear deterministic dynamical systems which minimize quadratic cost functions employing the invariant-imbedding method. The design scheme used for the optimum linear regulator is based on the integral-equation representation, which enables one to obtain the solution to the corresponding two-point boundary-value problem. The algorithm can be implemented in forward time without memory, unlike the conventional one which uses the Kalman gain function to calculate the feedback gain.  相似文献   

17.
This paper deals with the class of continuous-time singular linear systems with random abrupt changes. The state feedback stabilization and its robustness for this class of systems with norm-bounded uncertainties are tackled. Sufficient conditions for designing either a stabilizing controller or a robust stabilizing controller are developed in the LMI setting. The developed sufficient conditions are used to synthesize the state feedback controller that guarantees that either the nominal system or the uncertain system is piecewise regular, impulse free and stochastically stable or robust stochastically stable. The research of this author was supported by NSERC, Grant RGPIN36444-02.  相似文献   

18.
In this paper, we study the problem of designing decentralized reliable feedback control methods under a class of control failures for a class of linear interconnected continuous-time systems having internal subsystem time-delays and additional time-delay couplings. These failures are described by a model that takes into consideration possible outages or partial failures in every single actuator of each decentralized controller. The decentralized control design is performed through two steps. First, a decentralized stabilizing reliable feedback control set is derived at the subsystem level through the construction of appropriate Lyapunov-Krasovskii functional and, second, a feasible linear matrix inequalities procedure is then established for the effective construction of the control set under different feedback schemes. Two schemes are considered: the first is based on state measurement and the second utilizes static output feedback. The decentralized feedback gains in both schemes are determined by convex optimization over LMIs. We characterize decentralized linear matrix inequalities (LMIs)-based feasibility conditions such that every local closed-loop subsystem of the linear interconnected delay system is delay-dependent robustly asymptotically stable with a γ-level ℒ2-gain. The developed results are tested on a representative example.  相似文献   

19.
This paper mainly studies the problem of designing a hybrid state feedback D-admissible controller for a class of linear and nonlinear singular systems. Based on the relationship between singular discrete systems and singular delta operator systems, several necessary and sufficient conditions for a linear singular delta operator system to be D-admissible (i.e. regular, causal and all finite poles lie in a prescribed circular region) with different representations are derived. Then, the existence conditions and explicit expressions of a desirable D-admissible controller are given by means of matrix inequalities and strict linear matrix inequalities, respectively. We further extend the obtained results to singular delta operator systems with Lipschitz nonlinear perturbations, and the design methods of hybrid controller are presented for the nonlinear case as well. Finally, numerical examples as well as simulations are provided to illustrate the effectiveness of the theoretical outcomes obtained in the paper.  相似文献   

20.
It is known that the optimal controller for a linear dynamic system disturbed by additive, independently distributed in time, not necessarily Gaussian, noise is a linear function of the state variables if the performance criterion is the expected value of a quadratic form. This result is known to hold also when the noise is Gaussian and is multiplied by a linear function of the state and/or control variables.In this paper it is proved that the optimal controller for a discrete-time linear dynamic system with quadratic performance criterion is a linear function of the state variables when the additive random vector is a nonlinear function of the state and/or control variables and not necessarily Gaussian noise which is independently distributed in time, provided only that the mean value of the random vector is zero (there is no loss of generality in assuming this) and the covariance matrix of the random vector is a quadratic function of the state and/or control variables. The above-mentioned known results emerge as special cases and certain nonlinear other special cases are exhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号