首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Through using the methods of finite-size effect and short time dynamic scaling, we study the critical behavior of parasitic disease spreading process in a diffusive population mediated by a static vector environment. Through comprehensive analysis of parasitic disease spreading we find that this model presents a dynamical phase transition from disease-free state to endemic state with a finite population density. We determine the critical population density, above which the system reaches an epidemic spreading stationary state. We also perform a scaling analysis to determine the order parameter and critical relaxation exponents. The results show that the model does not belong to the usual directed percolation universality class and is compatible with the class of directed percolation with diffusive and conserved fields.  相似文献   

3.
Through using the methods of finite-size effect and short time dynamic scaling, we study the critical behavior of parasitic disease spreading process in a diffusive population mediated by a static vector environment. Through comprehensive analysis of parasitic disease spreading we find that this model presents a dynamical phase transition from disease-free state to endemic state with a finite population density. We determine the critical population density, above which the system reaches an epidemic spreading stationary state. We also perform a scaling analysis to determine the order parameter and critical relaxation exponents. The results show that the model does not belong to the usual directed percolation universality class and is compatible with the class of directed percolation with diffusive and conserved fields.  相似文献   

4.
We prove that the supercritical one-dimensional contact process survives in certain wedge-like space-time regions, and that when it survives it couples with the unrestricted contact process started from its upper invariant measure. As an application we show that a type of weak coexistence is possible in the nearest-neighbor “grass-bushes-trees” successional model introduced in Durrett and Swindle (Stoch. Proc. Appl. 37:19–31, 1991).  相似文献   

5.
The contact process is a model of spread of an infectious disease. Combining with the result of ref. 1, we prove that the critical exponents take on the mean-field values for sufficiently high dimensional nearest-neighbor models and for sufficiently spread-out models with d>4:() c as c and ()( c)–1 as c, where () and () are the spread probability and the susceptibility of the infection respectively, and c is the critical infection rate. Our results imply that the upper critical dimension for the contact process is at most 4.  相似文献   

6.
A critical length for laser self Q-switching and a self oscillation condition for an astrophysical maser are derived by analogy with neutron criticality, with back-scattering of radiation as the coupling process.  相似文献   

7.
The contact process and oriented percolation are expected to exhibit the same critical behavior in any dimension. Above their upper critical dimension d c, they exhibit the same critical behavior as the branching process. Assuming existence of the critical exponents, we prove a pair of hyperscaling inequalities which, together with the results of refs. 16 and 18, implies d c=4.  相似文献   

8.
9.
10.
11.
12.
13.
We review the use of superconductors as a playground for the experimental study of front roughening and avalanches. Using the magneto-optical technique, the spatial distribution of the vortex density in the sample is monitored as a function of time. The roughness and growth exponents corresponding to the vortex `landscape' are determined and compared to the exponents that characterize the avalanches in the framework of Self-Organized Criticality. For those situations where a thermo-magnetic instability arises, an analytical non-linear and non-local model is discussed, which is found to be consistent to great detail with the experimental results. On anisotropic substrates, the anisotropy regularizes the avalanches.  相似文献   

14.
An exact solution of the vacuum Einstein's field equations is presented, in which there exists a congruence of null geodesics whose shear behaves like a travelling wave of the KdV equation. On the basis of this exact solution, the feasibility of solitonic information transmission by exploiting the nonlinearity intrinsic to the Einstein field equations is discussed.  相似文献   

15.
We develop a thermodynamic formalism for a dissipative version of the Zhang model of Self-Organized Criticality, where a parameter allows us to tune the local energy dissipation. By constructing a suitable Markov partition we define Gibbs measures (in the sense of Sinai, Ruelle, and Bowen), partition functions, and topological pressure allowing the analysis of probability distributions of avalanches. We discuss the infinite-size limit in this setting. In particular, we show that a Lee–Yang phenomenon occurs in the conservative case. This suggests new connections to classical critical phenomena.  相似文献   

16.
17.
Recent experimental investigations of criticality and phase separation in ionic fluids have revealed behavior of great theoretical interest. In seeking to understand the experiments, some of which appear to exhibit argonlike criticality and some of which exhibit classical (mean-field) criticality, a convenient starting point is the restricted primitive model (RPM) of symmetrically charged hard spheres, all of equal diameter , each sphere bearing a positive or negative charge of magnitudeq. There is overall charge neutrality, so that the expected number densities of the anions and cations are equal, += -. Studies of RPM charge-charge and density-density correlation functions indicate that the fluctuation-suppressing mechanism that yields mean-field critical behavior in nonionic systems with long-range interparticle potentials is not operative in the RPM. On the basis of plausible assumptions, Ising-like behavior is instead expected. The above work is summarized. New work of Zhang and the author is outlined, showing that when one loses the RPM symmetry (through, e.g., different valence, diameter, or dipole moment of anions and cations) a strong coupling between charge-charge and density-density correlation ensues. The way in which this can be expected to give rise to mean-field or mean-field-like behavior is noted. Other new observations concern the mean-field analogy found by Høye and the author between the parameter 2/(d–2) (d is the dimensionality) in that model and the monomer number in high polymers, with respect to the coexistence-curve shape dependence on those parameters.  相似文献   

18.
We analyze the behavior of the U.S. S&P 500 index from 1984 to 1995, and characterize the non-Gaussian probability density functions (PDF) of the log returns. The temporal dependence of fat tails in the PDF of a ten-minute log return shows a gradual, systematic increase in the probability of the appearance of large increments on approaching black Monday in October 1987, reminiscent of parameter tuning towards criticality. On the occurrence of the black Monday crash, this culminates in an abrupt transition of the scale dependence of the non-Gaussian PDF towards scale-invariance characteristic of critical behavior. These facts suggest the need for revisiting the turbulent cascade paradigm recently proposed for modeling the underlying dynamics of the financial index, to account for time varying-phase transitionlike and scale invariant-critical-like behavior.  相似文献   

19.
We show that a continuous-time version of the triangle condition for percolation implies mean-field values for several contact process critical exponents. Our results support the belief that the upper critical (spatial) dimension for the contact process is four.  相似文献   

20.
In the nervous system, information is conveyed by sequence of action potentials, called spikes-trains. As MacKay and McCulloch suggested, spike-trains can be represented as bits sequences coming from Information Sources (IS). Previously, we studied relations between spikes’ Information Transmission Rates (ITR) and their correlations, and frequencies. Now, I concentrate on the problem of how spikes fluctuations affect ITR. The IS are typically modeled as stationary stochastic processes, which I consider here as two-state Markov processes. As a spike-trains’ fluctuation measure, I assume the standard deviation σ, which measures the average fluctuation of spikes around the average spike frequency. I found that the character of ITR and signal fluctuations relation strongly depends on the parameter s being a sum of transitions probabilities from a no spike state to spike state. The estimate of the Information Transmission Rate was found by expressions depending on the values of signal fluctuations and parameter s. It turned out that for smaller s<1, the quotient ITRσ has a maximum and can tend to zero depending on transition probabilities, while for 1<s, the ITRσ is separated from 0. Additionally, it was also shown that ITR quotient by variance behaves in a completely different way. Similar behavior was observed when classical Shannon entropy terms in the Markov entropy formula are replaced by their approximation with polynomials. My results suggest that in a noisier environment (1<s), to get appropriate reliability and efficiency of transmission, IS with higher tendency of transition from the no spike to spike state should be applied. Such selection of appropriate parameters plays an important role in designing learning mechanisms to obtain networks with higher performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号