首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
We study minimizers of the pseudo-relativistic Hartree functional \({\mathcal {E}}_{a}(u):=\Vert (-\varDelta +m^{2})^{1/4}u\Vert _{L^{2}}^{2}+\int _{{\mathbb {R}}^{3}}V(x)|u(x)|^{2}\mathrm{d}x-\frac{a}{2}\int _{{\mathbb {R}}^{3}}(\left| \cdot \right| ^{-1}\star |u|^{2})(x)|u(x)|^{2}\mathrm{d}x\) under the mass constraint \(\int _{{\mathbb {R}}^3}|u(x)|^2\mathrm{d}x=1\). Here \(m>0\) is the mass of particles and \(V\ge 0\) is an external potential. We prove that minimizers exist if and only if a satisfies \(0\le a<a^{*}\), and there is no minimizer if \(a\ge a^*\), where \(a^*\) is called the Chandrasekhar limit. When a approaches \(a^*\) from below, the blow-up behavior of minimizers is derived under some general external potentials V. Here we consider three cases of V: trapping potential, i.e. \(V\in L_{\mathrm{loc}}^{\infty }({\mathbb {R}}^3)\) satisfies \(\lim _{|x|\rightarrow \infty }V(x)=\infty \); periodic potential, i.e. \(V\in C({\mathbb {R}}^3)\) satisfies \(V(x+z)=V(x)\) for all \(z\in \mathbb {Z}^3\); and ring-shaped potential, e.g. \( V(x)=||x|-1|^p\) for some \(p>0\).  相似文献   

2.
3.
Let \(z\in \mathbb {C}\), let \(\sigma ^2>0\) be a variance, and for \(N\in \mathbb {N}\) define the integrals
$$\begin{aligned} E_N^{}(z;\sigma ) := \left\{ \begin{array}{ll} {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}}\! (x^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x^2}}{\sqrt{2\pi }}dx&{}\quad \text{ if }\, N=1,\\ {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}^N}\! \prod \prod \limits _{1\le k<l\le N}\!\! e^{-\frac{1}{2N}(1-\sigma ^{-2}) (x_k-x_l)^2} \prod _{1\le n\le N}\!\!\!\!(x_n^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x_n^2}}{\sqrt{2\pi }}dx_n &{}\quad \text{ if }\, N>1. \end{array}\right. \!\!\! \end{aligned}$$
These are expected values of the polynomials \(P_N^{}(z)=\prod _{1\le n\le N}(X_n^2+z^2)\) whose 2N zeros \(\{\pm i X_k\}^{}_{k=1,\ldots ,N}\) are generated by N identically distributed multi-variate mean-zero normal random variables \(\{X_k\}^{N}_{k=1}\) with co-variance \(\mathrm{{Cov}}_N^{}(X_k,X_l)=(1+\frac{\sigma ^2-1}{N})\delta _{k,l}+\frac{\sigma ^2-1}{N}(1-\delta _{k,l})\). The \(E_N^{}(z;\sigma )\) are polynomials in \(z^2\), explicitly computable for arbitrary N, yet a list of the first three \(E_N^{}(z;\sigma )\) shows that the expressions become unwieldy already for moderate N—unless \(\sigma = 1\), in which case \(E_N^{}(z;1) = (1+z^2)^N\) for all \(z\in \mathbb {C}\) and \(N\in \mathbb {N}\). (Incidentally, commonly available computer algebra evaluates the integrals \(E_N^{}(z;\sigma )\) only for N up to a dozen, due to memory constraints). Asymptotic evaluations are needed for the large-N regime. For general complex z these have traditionally been limited to analytic expansion techniques; several rigorous results are proved for complex z near 0. Yet if \(z\in \mathbb {R}\) one can also compute this “infinite-degree” limit with the help of the familiar relative entropy principle for probability measures; a rigorous proof of this fact is supplied. Computer algebra-generated evidence is presented in support of a conjecture that a generalization of the relative entropy principle to signed or complex measures governs the \(N\rightarrow \infty \) asymptotics of the regime \(iz\in \mathbb {R}\). Potential generalizations, in particular to point vortex ensembles and the prescribed Gauss curvature problem, and to random matrix ensembles, are emphasized.
  相似文献   

4.
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces \({\mathbb {R}}^{N_1} \times _{\mathcal {R}} {\mathbb {R}}^{N_2}\). These coordinate algebras are quadratic ones associated with an \(\mathcal {R}\)-matrix which is involutive and satisfies the Yang–Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces \({\mathbb {R}}^{4} \times _{\mathcal {R}} {\mathbb {R}}^{4}\). Among these, particularly well behaved ones have deformation parameter \(\mathbf{u} \in {\mathbb {S}}^2\). Quotients include seven spheres \({\mathbb {S}}^{7}_\mathbf{u}\) as well as noncommutative quaternionic tori \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u} = {\mathbb {S}}^3 \times _\mathbf{u} {\mathbb {S}}^3\). There is invariance for an action of \({{\mathrm{SU}}}(2) \times {{\mathrm{SU}}}(2)\) on the torus \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u}\) in parallel with the action of \(\mathrm{U}(1) \times \mathrm{U}(1)\) on a ‘complex’ noncommutative torus \({\mathbb {T}}^2_\theta \) which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.  相似文献   

5.
The neutrinoless double-beta (\(0\nu 2\beta \)) decay is currently the only feasible process in particle and nuclear physics to probe whether massive neutrinos are the Majorana fermions. If they are of a Majorana nature and have a normal mass ordering, the effective neutrino mass term \(\langle m\rangle ^{}_{ee}\) of a \(0\nu 2\beta \) decay may suffer significant cancellations among its three components and thus sink into a decline, resulting in a “well” in the three-dimensional graph of \(|\langle m\rangle ^{}_{ee}|\) against the smallest neutrino mass \(m^{}_1\) and the relevant Majorana phase \(\rho \). We present a new and complete analytical understanding of the fine issues inside such a well, and identify a novel threshold of \(|\langle m\rangle ^{}_{ee}|\) in terms of the neutrino masses and flavor mixing angles: \(|\langle m\rangle ^{}_{ee}|^{}_* = m^{}_3 \sin ^2\theta ^{}_{13}\) in connection with \(\tan \theta ^{}_{12} = \sqrt{m^{}_1/m^{}_2}\) and \(\rho =\pi \). This threshold point, which links the local minimum and maximum of \(|\langle m\rangle ^{}_{ee}|\), can be used to signify observability or sensitivity of the future \(0\nu 2\beta \)-decay experiments. Given current neutrino oscillation data, the possibility of \(|\langle m\rangle ^{}_{ee}| < |\langle m\rangle ^{}_{ee}|^{}_*\) is found to be very small.  相似文献   

6.
It is shown that the deterministic infinite trigonometric products
$$\begin{aligned} \prod _{n\in \mathbb {N}}\left[ 1- p +p\cos \left( \textstyle n^{-s}_{_{}}t\right) \right] =: {\text{ Cl }_{p;s}^{}}(t) \end{aligned}$$
with parameters \( p\in (0,1]\ \& \ s>\frac{1}{2}\), and variable \(t\in \mathbb {R}\), are inverse Fourier transforms of the probability distributions for certain random series \(\Omega _{p}^\zeta (s)\) taking values in the real \(\omega \) line; i.e. the \({\text{ Cl }_{p;s}^{}}(t)\) are characteristic functions of the \(\Omega _{p}^\zeta (s)\). The special case \(p=1=s\) yields the familiar random harmonic series, while in general \(\Omega _{p}^\zeta (s)\) is a “random Riemann-\(\zeta \) function,” a notion which will be explained and illustrated—and connected to the Riemann hypothesis. It will be shown that \(\Omega _{p}^\zeta (s)\) is a very regular random variable, having a probability density function (PDF) on the \(\omega \) line which is a Schwartz function. More precisely, an elementary proof is given that there exists some \(K_{p;s}^{}>0\), and a function \(F_{p;s}^{}(|t|)\) bounded by \(|F_{p;s}^{}(|t|)|\!\le \! \exp \big (K_{p;s}^{} |t|^{1/(s+1)})\), and \(C_{p;s}^{}\!:=\!-\frac{1}{s}\int _0^\infty \ln |{1-p+p\cos \xi }|\frac{1}{\xi ^{1+1/s}}\mathrm{{d}}\xi \), such that
$$\begin{aligned} \forall \,t\in \mathbb {R}:\quad {\text{ Cl }_{p;s}^{}}(t) = \exp \bigl ({- C_{p;s}^{} \,|t|^{1/s}\bigr )F_{p;s}^{}(|t|)}; \end{aligned}$$
the regularity of \(\Omega _{p}^\zeta (s)\) follows. Incidentally, this theorem confirms a surmise by Benoit Cloitre, that \(\ln {\text{ Cl }_{{{1}/{3}};2}^{}}(t) \sim -C\sqrt{t}\; \left( t\rightarrow \infty \right) \) for some \(C>0\). Graphical evidence suggests that \({\text{ Cl }_{{{1}/{3}};2}^{}}(t)\) is an empirically unpredictable (chaotic) function of t. This is reflected in the rich structure of the pertinent PDF (the Fourier transform of \({\text{ Cl }_{{{1}/{3}};2}^{}}\)), and illustrated by random sampling of the Riemann-\(\zeta \) walks, whose branching rules allow the build-up of fractal-like structures.
  相似文献   

7.
In the aligned two-Higgs-doublet model, we perform a complete one-loop computation of the short-distance Wilson coefficients \(C_{7,9,10}^{(\prime )}\), which are the most relevant ones for \(b\rightarrow s\ell ^+\ell ^-\) transitions. It is found that, when the model parameter \(\left| \varsigma _{u}\right| \) is much smaller than \(\left| \varsigma _{d}\right| \), the charged scalar contributes mainly to chirality-flipped \(C_{9,10}^\prime \), with the corresponding effects being proportional to \(\left| \varsigma _{d}\right| ^2\). Numerically, the charged-scalar effects fit into two categories: (A) \(C_{7,9,10}^\mathrm {H^\pm }\) are sizable, but \(C_{9,10}^{\prime \mathrm {H^\pm }}\simeq 0\), corresponding to the (large \(\left| \varsigma _{u}\right| \), small \(\left| \varsigma _{d}\right| \)) region; (B) \(C_7^\mathrm {H^\pm }\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are sizable, but \(C_{9,10}^\mathrm {H^\pm }\simeq 0\), corresponding to the (small \(\left| \varsigma _{u}\right| \), large \(\left| \varsigma _{d}\right| \)) region. Taking into account phenomenological constraints from the inclusive radiative decay \(B\rightarrow X_{s}{\gamma }\), as well as the latest model-independent global analysis of \(b\rightarrow s\ell ^+\ell ^-\) data, we obtain the much restricted parameter space of the model. We then study the impact of the allowed model parameters on the angular observables \(P_2\) and \(P_5'\) of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay, and we find that \(P_5'\) could be increased significantly to be consistent with the experimental data in case B.  相似文献   

8.
For the search for charginos and neutralinos in the Minimal Supersymmetric Standard Model (MSSM) as well as for future precision analyses of these particles an accurate knowledge of their production and decay properties is mandatory. We evaluate the cross sections for the chargino and neutralino production at \(e^+e^-\) colliders in the MSSM with complex parameters (cMSSM). The evaluation is based on a full one-loop calculation of the production mechanisms \(e^+e^- \rightarrow {\tilde{\chi }}_{c}^\pm {\tilde{\chi }}_{c^\prime }^\mp \) and \(e^+e^- \rightarrow {\tilde{\chi }}_{n}^0 {\tilde{\chi }}_{n^\prime }^0\)  including soft and hard photon radiation. We mostly restricted ourselves to a version of our renormalization scheme which is valid for \(|M_1| < |M_2|, |\mu |\) and \(M_2 \ne \mu \) to simplify the analysis, even though we are able to switch to other parameter regions and correspondingly different renormalization schemes. The dependence of the chargino/neutralino cross sections on the relevant cMSSM parameters is analyzed numerically. We find sizable contributions to many production cross sections. They amount to roughly \({\pm }15\%\) of the tree-level results but can go up to \({\pm }40\%\) or higher in extreme cases. Also the complex phase dependence of the one-loop corrections was found non-negligible. The full one-loop contributions are thus crucial for physics analyses at a future linear \(e^+e^-\) collider such as the ILC or CLIC.  相似文献   

9.
We study a spatial birth-and-death process on the phase space of locally finite configurations \({\varGamma }^+ \times {\varGamma }^-\) over \({\mathbb {R}}^d\). Dynamics is described by an non-equilibrium evolution of states obtained from the Fokker-Planck equation and associated with the Markov operator \(L^+(\gamma ^-) + \frac{1}{\varepsilon }L^-\), \(\varepsilon > 0\). Here \(L^-\) describes the environment process on \({\varGamma }^-\) and \(L^+(\gamma ^-)\) describes the system process on \({\varGamma }^+\), where \(\gamma ^-\) indicates that the corresponding birth-and-death rates depend on another locally finite configuration \(\gamma ^- \in {\varGamma }^-\). We prove that, for a certain class of birth-and-death rates, the corresponding Fokker-Planck equation is well-posed, i.e. there exists a unique evolution of states \(\mu _t^{\varepsilon }\) on \({\varGamma }^+ \times {\varGamma }^-\). Moreover, we give a sufficient condition such that the environment is ergodic with exponential rate. Let \(\mu _{\mathrm {inv}}\) be the invariant measure for the environment process on \({\varGamma }^-\). In the main part of this work we establish the stochastic averaging principle, i.e. we prove that the marginal of \(\mu _t^{\varepsilon }\) onto \({\varGamma }^+\) converges weakly to an evolution of states on \({\varGamma }^+\) associated with the averaged Markov birth-and-death operator \({\overline{L}} = \int _{{\varGamma }^-}L^+(\gamma ^-)d \mu _{\mathrm {inv}}(\gamma ^-)\).  相似文献   

10.
We discuss the determination of the CKM angle \(\alpha \) using the non-leptonic two-body decays \(B\rightarrow \pi \pi \), \(B\rightarrow \rho \rho \) and \(B\rightarrow \rho \pi \) using the latest data available. We illustrate the methods used in each case and extract the corresponding value of \(\alpha \). Combining all these elements, we obtain the determination \(\alpha _\mathrm{dir}={({86.2}_{-4.0}^{+4.4} \cup {178.4}_{-5.1}^{+3.9})}^{\circ }\). We assess the uncertainties associated to the breakdown of the isospin hypothesis and the choice of the statistical framework in detail. We also determine the hadronic amplitudes (tree and penguin) describing the QCD dynamics involved in these decays, briefly comparing our results with theoretical expectations. For each observable of interest in the \(B\rightarrow \pi \pi \), \(B\rightarrow \rho \rho \) and \(B\rightarrow \rho \pi \) systems, we perform an indirect determination based on the constraints from all the other observables available and we discuss the compatibility between indirect and direct determinations. Finally, we review the impact of future improved measurements on the determination of \(\alpha \).  相似文献   

11.
We present a microscopic derivation of the two-dimensional focusing cubic nonlinear Schrödinger equation starting from an interacting N-particle system of Bosons. The interaction potential we consider is given by \(W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)\) for some spherically symmetric and compactly supported potential \(W \in L^\infty ({\mathbb {R}}^2, {\mathbb {R}})\). The class of initial wave functions is chosen such that the variance in energy is small. Furthermore, we assume that the Hamiltonian \( H_{W_\beta , t}=-\sum _{j=1}^N \Delta _j+\sum _{1\le j< k\le N} W_\beta (x_j-x_k) +\sum _{j=1}^N A_t(x_j)\) fulfills stability of second kind, that is \( H_{W_\beta , t} \ge -\,CN\). We then prove the convergence of the reduced density matrix corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in either Sobolev trace norm, if \(\Vert A_t\Vert _p < \infty \) for some \(p>2\), or in trace norm, for more general external potentials. For trapping potentials of the form \(A(x)=C |x|^s\; , C>0\), the condition \( H_{W_\beta , t} \ge -\,CN\) can be fulfilled for a certain class of interactions \(W_\beta \), for all \(0< \beta < \frac{s+1}{s+2}\), see Lewin et al. (Proc Am Math Soc 145:2441–2454, 2017).  相似文献   

12.
We consider bond percolation on \({\mathbb {Z}}^d\times {\mathbb {Z}}^s\) where edges of \({\mathbb {Z}}^d\) are open with probability \(p<p_c({\mathbb {Z}}^d)\) and edges of \({\mathbb {Z}}^s\) are open with probability q, independently of all others. We obtain bounds for the critical curve in (pq), with p close to the critical threshold \(p_c({\mathbb {Z}}^d)\). The results are related to the so-called dimensional crossover from \({\mathbb {Z}}^d\) to \({\mathbb {Z}}^{d+s}\).  相似文献   

13.
We consider the X(3872) resonance as a \(J^\mathrm{{PC}}=1^{++}\) \(D\bar{D}^*\) hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers \(2^{++}\), \(X_{2}\), which would be a \(D^*\bar{D}^*\) loosely bound state. The \(X_{2}\) is expected to decay dominantly into \(D\bar{D}\), \(D\bar{D}^*\) and \(\bar{D} D^*\) in d-wave. In this work, we calculate the decay widths of the \(X_{2}\) resonance into the above channels, as well as those of its bottom partner, \(X_{b2}\), the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the \(X_{2}\) and \(X_{b2}\) of the order of a few MeV. Finally, we also study the radiative \(X_2\rightarrow D\bar{D}^{*}\gamma \) and \(X_{b2} \rightarrow \bar{B} B^{*}\gamma \) decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the \(D\bar{D}^{*}\) or \(B\bar{B}^{*}\) final state interaction.  相似文献   

14.
By including the interference effect between the QCD and the QED diagrams, we carry out a complete analysis on the exclusive productions of \(e^+e^- \rightarrow J/\psi +\chi _{cJ}\) (\(J=0,1,2\)) at the B factories with \(\sqrt{s}=10.6\) GeV at the next-to-leading-order (NLO) level in \(\alpha _s\), within the nonrelativistic QCD framework. It is found that the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms that represent the tree-level interference are comparable with the usual NLO QCD corrections, especially for the \(\chi _{c1}\) and \(\chi _{c2}\) cases. To explore the effect of the higher-order terms, namely \({\mathcal {O}} (\alpha ^3\alpha _s^2)\), we perform the QCD corrections to these \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms for the first time, which are found to be able to significantly influence the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order results. In particular, in the case of \(\chi _{c1}\) and \(\chi _{c2}\), the newly calculated \({\mathcal {O}} (\alpha ^3\alpha _s^2)\)-order terms can to a large extent counteract the \({\mathcal {O}} (\alpha ^3\alpha _s)\) contributions, evidently indicating the indispensability of the corrections. In addition, we find that, as the collision energy rises, the percentage of the interference effect in the total cross section will increase rapidly, especially for the \(\chi _{c1}\) case.  相似文献   

15.
We consider supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the \(\phi ^n\) potential with \(n=2\) or 4. We show that the coexistence of an exponential non-minimal coupling to gravity \(f_\mathcal{R}=\mathrm{e}^{c_\mathcal{R}\phi ^{p}}\) with a kinetic mixing of the form \(f_{\mathrm{K}}=c_{\mathrm{K}}f_\mathcal{R}^m\) can accommodate inflationary observables favored by the Planck and Bicep2/Keck Array results for \(p=1\) and 2, \(1\le m\le 15\) and \(2.6\times 10^{-3}\le r_{\mathcal {R}\mathrm{K}}=c_\mathcal{R}/c_{\mathrm{K}}^{p/2}\le 1,\) where the upper limit is not imposed for \(p=1\). Inflation is of hilltop type and it can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale. The supergravity embedding of these models is achieved employing two chiral gauge singlet supefields, a monomial superpotential and several (semi)logarithmic or semi-polynomial Kähler potentials.  相似文献   

16.
We consider the half-wave maps equation
$$\begin{aligned} \partial _t \vec {S} = \vec {S} \wedge |\nabla | \vec {S}, \end{aligned}$$
where \(\vec {S}= \vec {S}(t,x)\) takes values on the two-dimensional unit sphere \(\mathbb {S}^2\) and \(x \in \mathbb {R}\) (real line case) or \(x \in \mathbb {T}\) (periodic case). This an energy-critical Hamiltonian evolution equation recently introduced in Lenzmann and Schikorra (2017, arXiv:1702.05995v2), Zhou and Stone (Phys Lett A 379:2817–2825, 2015) which formally arises as an effective evolution equation in the classical and continuum limit of Haldane–Shastry quantum spin chains. We prove that the half-wave maps equation admits a Lax pair and we discuss some analytic consequences of this finding. As a variant of our arguments, we also obtain a Lax pair for the half-wave maps equation with target \(\mathbb {H}^2\) (hyperbolic plane).
  相似文献   

17.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

18.
We study frame properties of a matrix-valued wave packet system in the matrix-valued function space \(L^{2}(\mathbb {R}^{d}, \mathbb {C}^{s\times r})\), where the lower frame condition is controlled by a bounded linear operator \(\mathcal {K}\) on \(L^{2}(\mathbb {R}^{d}, \mathbb {C}^{s\times r})\) (lower \(\mathcal {K}\)-frame condition, in short). There are many differences between ordinary frames and \(\mathcal {K}\)-frames. The lower \(\mathcal {K}\)-frame condition for matrix-valued wave packet Bessel sequences in \(L^{2}(\mathbb {R}^{d},\mathbb {C}^{s\times r})\) in terms of operators; a trace functional associated with a bounded linear operator on \(L^{2}(\mathbb {R}^{d}, \mathbb {C}^{s\times r})\); and a series associated with a matrix-valued Bessel sequence is presented. It is shown that matrix-valued wave packet frames are stable under small perturbation with respect to wave packet window functions.  相似文献   

19.
We consider the n-component \(|\varphi |^4\) lattice spin model (\(n \ge 1\)) and the weakly self-avoiding walk (\(n=0\)) on \(\mathbb Z^d\), in dimensions \(d=1,2,3\). We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance r as \(r^{-(d+\alpha )}\) with \(\alpha \in (0,2)\). The upper critical dimension is \(d_c=2\alpha \). For \(\varepsilon >0\), and \(\alpha = \frac{1}{2} (d+\varepsilon )\), the dimension \(d=d_c-\varepsilon \) is below the upper critical dimension. For small \(\varepsilon \), weak coupling, and all integers \(n \ge 0\), we prove that the two-point function at the critical point decays with distance as \(r^{-(d-\alpha )}\). This “sticking” of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.  相似文献   

20.
We study the CP-violation effects from two types of neutrino mass matrices with (i) \((M_\nu )_{ee}=0\), and (ii) \((M_\nu )_{ee}=(M_\nu )_{e\mu }=0\), which can be realized by the high-dimensional lepton number violating operators \(\bar{\ell }_R^c\gamma ^\mu L_L (D_\mu \Phi )\Phi ^2\) and \(\bar{\ell }_R^c l_R (D_\mu {\Phi })^2\Phi ^2\), respectively. In (i), the neutrino mass spectrum is in the normal ordering with the lightest neutrino mass within the range \(0.002\,\mathrm{eV}\lesssim m_0\lesssim 0.007\,\mathrm{eV}\). Furthermore, for a given value of \(m_0\), there are two solutions for the two Majorana phases \(\alpha _{21}\) and \(\alpha _{31}\), whereas the Dirac phase \(\delta \) is arbitrary. For (ii), the parameters of \(m_0\), \(\delta \), \(\alpha _{21}\), and \(\alpha _{31}\) can be completely determined. We calculate the CP-violating asymmetries in neutrino–antineutrino oscillations for both mass textures of (i) and (ii), which are closely related to the CP-violating Majorana phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号