首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.  相似文献   

2.
We study the response of dynamical systems to finite amplitude perturbation. A generalized fluctuation-response relation is derived, which links the average relaxation toward equilibrium to the invariant measure of the system and points out the relevance of the amplitude of the initial perturbation. Numerical computations on systems with many characteristic times show the relevance of the above-mentioned relation in realistic cases.  相似文献   

3.
邵元智  钟伟荣  林光明  李坚灿 《中国物理》2005,14(10):2110-2116
The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of ho-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.  相似文献   

4.
5.
The Einstein relation, relating the steady state fluctuation properties to the linear response to a perturbation, is considered for steady states of stochastic models with a finite state space. We show how an Einstein relation always holds if the steady state satisfies detailed balance. More generally, we consider nonequilibrium steady states where detailed balance does not hold and show how a generalisation of the Einstein relation may be derived in certain cases. In particular, for the asymmetric simple exclusion process and a driven diffusive dimer model, the external perturbation creates and annihilates particles thus breaking the particle conservation of the unperturbed model.  相似文献   

6.
We apply standard projection operator techniques known from nonequilibrium statistical mechanics to eliminate fast chaotic degrees of freedom in a low-dimensional dynamical system. Through the usual perturbative approach we end up in second order with a stochastic system where the fast chaotic degrees of freedom are modelled by Gaussian white noise. The accuracy of the perturbation expansion is analysed in detail by the discussion of an exactly solvable model.  相似文献   

7.
Many problems in the study of dynamical systems—including identification of effective order, detection of nonlinearity or chaos, and change detection—can be reframed in terms of assessing the similarity between dynamical systems or between a given dynamical system and a reference. We introduce a general metric of dynamical similarity that is well posed for both stochastic and deterministic systems and is informative of the aforementioned dynamical features even when only partial information about the system is available. We describe methods for estimating this metric in a range of scenarios that differ in respect to contol over the systems under study, the deterministic or stochastic nature of the underlying dynamics, and whether or not a fully informative set of variables is available. Through numerical simulation, we demonstrate the sensitivity of the proposed metric to a range of dynamical properties, its utility in mapping the dynamical properties of parameter space for a given model, and its power for detecting structural changes through time series data.  相似文献   

8.
张莹  徐伟  方同  徐旭林 《中国物理》2007,16(7):1923-1933
In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer--van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.  相似文献   

9.
In the present paper, the statistical responses of two-special prey–predator type ecosystem models excited by combined Gaussian and Poisson white noise are investigated by generalizing the stochastic averaging method. First, we unify the deterministic models for the two cases where preys are abundant and the predator population is large, respectively. Then, under some natural assumptions of small perturbations and system parameters, the stochastic models are introduced. The stochastic averaging method is generalized to compute the statistical responses described by stationary probability density functions (PDFs) and moments for population densities in the ecosystems using a perturbation technique. Based on these statistical responses, the effects of ecosystem parameters and the noise parameters on the stationary PDFs and moments are discussed. Additionally, we also calculate the Gaussian approximate solution to illustrate the effectiveness of the perturbation results. The results show that the larger the mean arrival rate, the smaller the difference between the perturbation solution and Gaussian approximation solution. In addition, direct Monte Carlo simulation is performed to validate the above results.  相似文献   

10.
马少娟  徐伟  李伟  靳艳飞 《物理学报》2005,54(8):3508-3515
应用 Chebyshev 多项式逼近法研究了谐和激励作用下具有随机参数的随机van der Pol系统 的倍周期分岔现象.随机系统首先被转化成等价的确定性系统,然后通过数值方法求得响应 ,借此探索了随机van der Pol系统丰富的随机倍周期分岔现象.数值模拟显示随机van der Pol 系统存在与确定性系统极为相似的倍周期分岔行为,但受随机因素的影响,又有与之不 同之处.数值结果表明,Chebyshev 多项式逼近是研究非线性系统动力学问题的一种新的有 效方法. 关键词: Chebyshev 多项式 随机van der Pol 系统 倍周期分岔  相似文献   

11.
Sensitivity to initial conditions in nonlinear dynamical systems leads to exponential divergence of trajectories that are initially arbitrarily close, and hence to unpredictability. Statistical methods have been found to be helpful in extracting useful information about such systems. In this paper, we review briefly some statistical methods employed in the study of deterministic and stochastic dynamical systems. These include power spectral analysis and aliasing, extreme value statistics and order statistics, recurrence time statistics, the characterization of intermittency in the Sinai disorder problem, random walk analysis of diffusion in the chaotic pendulum, and long-range correlations in stochastic sequences of symbols.  相似文献   

12.
We demonstrate coherence resonance in a dynamical system without external noise. The experimental evidence is reported in the low frequency fluctuations of a chaotic diode laser with optical feedback. The phenomenon is also verified numerically using the Lang-Kobayashi equations for a single solitary mode laser, without noise terms. Fast deterministic dynamics plays the role of an effective exciting noise, narrowing the resonance in the autonomous slow power drop cycles of the laser. This new result is the natural extension of deterministic stochastic resonance and noise induced coherence resonance predicted and observed in recent years.  相似文献   

13.
倪菲  徐伟  方同  岳晓乐 《中国物理 B》2010,19(1):10510-010510
This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional R?ssler system with an arch-like bounded random parameter. First, we transform the stochastic R?ssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic R?ssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic R?ssler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic R?ssler system.  相似文献   

14.
We analyze noise-induced phenomena in nonlinear dynamical systems near a subcritical Hopf bifurcation. We investigate qualitative changes of probability distributions (stochastic bifurcations), coherence resonance, and stochastic synchronization. These effects are studied in dynamical systems for which a subcritical Hopf bifurcation occurs. We perform analytical calculations, numerical simulations and experiments on an electronic circuit. For the generalized Van der Pol model we uncover the similarities between the behavior of a self-sustained oscillator characterized by a subcritical Hopf bifurcation and an excitable system. The analogy is manifested through coherence resonance and stochastic synchronization. In particular, we show both experimentally and numerically that stochastic oscillations that appear due to noise in a system with hard excitation, can be partially synchronized even outside the oscillatory regime of the deterministic system.  相似文献   

15.
We present a general mathematical framework for constructing deterministic models of simple chemical reactions. In such a model, an underlying dynamical system drives a process in which a particle undergoes a reaction (changes color) when it enters a certain subset (the catalytic site) of the phase space and (possibly) some other conditions are satisfied. The framework we suggest allows us to define the entropy of reaction precisely and does not rely, as was the case in previous studies, on a stochastic mechanism to generate additional entropy. Thus our approach provides a natural setting in which to derive macroscopic chemical reaction laws from microscopic deterministic dynamics without invoking any random mechanisms.  相似文献   

16.
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number R0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if R0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If R0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of R0, when the stochastic system obeys some conditions and R0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable.Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.  相似文献   

17.
戎海武  王向东  徐伟  方同 《物理学报》2008,57(11):6888-6895
研究了Duffing单边约束系统在谐和与随机噪声联合激励下的响应问题. 用谐波平衡法和摄动法分析了系统在确定性谐和激励和随机激励联合作用下的响应,用随机平均法讨论了随机扰动项对系统响应的影响. 在一定条件下,当约束距离较大时对应于不同的初始条件,系统具有两个非碰撞的稳态响应;而当约束距离不大时,对应于不同的初始条件,系统也可以有两个不同的稳态响应,其中一个是发生碰撞的响应,而另外一个则不发生碰撞. 数值模拟表明该方法是有效的. 关键词: Duffing单边约束系统 随机响应 谐波平衡法 摄动法  相似文献   

18.
The response of linear damped gyroscopic systems can be obtained by means of techniques of linear systems theory, which involves the computation of the transition matrix. The response is in terms of complex quantities, which is likely to cause computational difficulties as the order of the system increases. In the absence of damping, it is possible to derive the response of a linear gyroscopic system with relative ease by working with real quantities alone. When damping is small, one can use a perturbation approach to produce the response by regarding the undamped gyroscopic system as the unperturbed system. In a previous paper, a perturbation analysis was used to derive the response of a gyroscopic system with small internal damping. This paper extends the approach to the case of external damping, which is characterized not only by symmetric coefficients multiplying velocities but also by skew symmetric coefficients multiplying displacements, where the latter terms are known as circulatory. A numerical example is presented.  相似文献   

19.
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.  相似文献   

20.
Nonlinear oscillators have been utilized in many contexts because they encompass a large class of phenomena. For a reduced phase oscillator model with weak noise forcing that is necessarily multiplicative, we provide analytic formulas for the stationary statistical quantities of the random period. This is an important quantity which we term ‘response’ (i.e., the spike times, instantaneous frequency in neuroscience, the cycle time in chemical reactions, etc.) that is often analytically intractable in noisy oscillator systems. The analytic formulas are accurate in the weak noise limit so that one does not have to numerically solve a time-varying Fokker-Planck equation. The steady-state and dynamic responses are also analyzed with deterministic forcing. A second order analytic formula is derived for the steady-state response, whereas the dynamic response with time-varying forcing is more complicated. We focus on the specific case where the forcing is sinusoidal and accurately capture the frequency response with an analytic approximation that is obtained with a rescaling of the equation. By utilizing various techniques in the weak noise regime, this work leads to a better understanding of how the random period of nonlinear oscillators are affected by multiplicative noise and external forcing. Comparisons of the asymptotic formulas with a full oscillator system confirm the qualitative accurateness of the theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号