首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
We show how macroeconomic dynamics can be derived from asymmetric information. As an illustration of the utility of this approach we derive the equilibrium density, non-equilibrium densities and the equation of motion for the response to a demand shock for productivity in a simple economy. Novel consequences of this approach include a natural incorporation of time dependence into macroeconomics and a common information-theoretic basis for economics and other fields seeking to link micro-dynamics and macro-observables.  相似文献   

2.
We examine the entropy of non-equilibrium stationary states of boundary driven totally asymmetric simple exclusion processes. As a consequence, we obtain that the Gibbs–Shannon entropy of the non equilibrium stationary state converges to the Gibbs–Shannon entropy of the local equilibrium state. Moreover, we prove that its fluctuations are Gaussian, except when the mean displacement of particles produced by the bulk dynamics agrees with the particle flux induced by the density reservoirs in the maximal phase regime.  相似文献   

3.
In systems with a large degeneracy of states such as black holes, one expects that the average value of probe correlation functions will be well approximated by the thermal ensemble. To understand how correlation functions in individual microstates differ from the canonical ensemble average and from each other, we study the variances in correlators. Using general statistical considerations, we show that the variance between microstates will be exponentially suppressed in the entropy. However, by exploiting the analytic properties of correlation functions we argue that these variances are amplified in imaginary time, thereby distinguishing pure states from the thermal density matrix. We demonstrate our general results in specific examples and argue that our results apply to the microstates of black holes.  相似文献   

4.
MaxEnt inference algorithm and information theory are relevant for the time evolution of macroscopic systems considered as problem of incomplete information. Two different MaxEnt approaches are introduced in this work, both applied to prediction of time evolution for closed Hamiltonian systems. The first one is based on Liouville equation for the conditional probability distribution, introduced as a strict microscopic constraint on time evolution in phase space. The conditional probability distribution is defined for the set of microstates associated with the set of phase space paths determined by solutions of Hamilton’s equations. The MaxEnt inference algorithm with Shannon’s concept of the conditional information entropy is then applied to prediction, consistently with this strict microscopic constraint on time evolution in phase space. The second approach is based on the same concepts, with a difference that Liouville equation for the conditional probability distribution is introduced as a macroscopic constraint given by a phase space average. We consider the incomplete nature of our information about microscopic dynamics in a rational way that is consistent with Jaynes’ formulation of predictive statistical mechanics, and the concept of macroscopic reproducibility for time dependent processes. Maximization of the conditional information entropy subject to this macroscopic constraint leads to a loss of correlation between the initial phase space paths and final microstates. Information entropy is the theoretic upper bound on the conditional information entropy, with the upper bound attained only in case of the complete loss of correlation. In this alternative approach to prediction of macroscopic time evolution, maximization of the conditional information entropy is equivalent to the loss of statistical correlation, and leads to corresponding loss of information. In accordance with the original idea of Jaynes, irreversibility appears as a consequence of gradual loss of information about possible microstates of the system.  相似文献   

5.
We resort to the methods of statistical mechanics in order to determine the effects that a deformed dispersion relation has upon the thermodynamics of a photon gas. The ensuing modifications to the density of states, partition function, pressure, internal energy, entropy, and specific heat are calculated. It will be shown that the breakdown of Lorentz invariance can be interpreted as a repulsive interaction, among the photons. Additionally, it will be proved that the presence of a deformed dispersion relation entails an increase in the entropy of the system. In other words, as a consequence of the loss of the aforementioned symmetry the number of microstates available to the corresponding equilibrium state grows.  相似文献   

6.
Starting out with the balance equations for energy-momentum, spin, particle and entropy density, an approach is considered which represents a framework for special- and general-relativistic continuum thermodynamics. A general entropy density 4-vector, containing particle, energy-momentum, and spin density contributions, is introduced. This makes possible, firstly, to test special entropy density 4-vectors used by other authors with respect to their generality and validity and, secondly, to determine entropy supply and entropy production. Using this entropy density 4-vector, material-independent equilibrium conditions are discussed. While in literature, generally thermodynamic equilibrium is determined by introducing a variety of conditions by hand, the present approach proceeds as follows: For a comparatively wide class of space–time geometries, the necessary equilibrium conditions of vanishing entropy supply and vanishing entropy production are exploited. Because these necessary equilibrium conditions do not determine the equilibrium, supplementary conditions are added systematically motivated by the requirement that also all parts of the necessary conditions have to be fixed in equilibrium.  相似文献   

7.
We study a probabilistic model of interacting spins indexed by elements of a finite subset of the d-dimensional integer lattice, d≥1. Conditions of time reversibility are examined. It is shown that the model equilibrium distribution converges to a limit distribution as the indexing set expands to the whole lattice. The occupied site percolation problem is solved for the limit distribution. Two models with similar dynamics are also discussed.  相似文献   

8.
Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interest in understanding matter out of equilibrium. In this Letter, we will consider how to define thermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.  相似文献   

9.
The Carnot cycle and the attendant notions of reversibility and entropy are examined. It is shown how the modern view of these concepts still corresponds to the ideas Clausius laid down in the nineteenth century. As such, they reflect the outmoded idea, current at the time, that heat is motion. It is shown how this view of heat led Clausius to develop the entropy of a body based on the work that could be performed in a reversible process rather than the work that is actually performed in an irreversible process. In consequence, Clausius built into entropy a conflict with energy conservation, which is concerned with actual changes in energy. In this paper, reversibility and irreversibility are investigated by means of a macroscopic formulation of internal mechanisms of damping based on rate equations for the distribution of energy within a gas. It is shown that work processes involving a step change in external pressure, however small, are intrinsically irreversible. However, under idealised conditions of zero damping the gas inside a piston expands and traces out a trajectory through the space of equilibrium states. Therefore, the entropy change due to heat flow from the reservoir matches the entropy change of the equilibrium states. This trajectory can be traced out in reverse as the piston reverses direction, but if the external conditions are adjusted appropriately, the gas can be made to trace out a Carnot cycle in P-V space. The cycle is dynamic as opposed to quasi-static as the piston has kinetic energy equal in difference to the work performed internally and externally.  相似文献   

10.
We give a proof of transient fluctuation relations for the entropy production (dissipation function) in nonequilibrium systems, which is valid for most time reversible dynamics. We then consider the conditions under which a transient fluctuation relation yields a steady state fluctuation relation for driven nonequilibrium systems whose transients relax, producing a unique nonequilibrium steady state. Although the necessary and sufficient conditions for the production of a unique nonequilibrium steady state are unknown, if such a steady state exists, the generation of the steady state fluctuation relation from the transient relation is shown to be very general. It is essentially a consequence of time reversibility and of a form of decay of correlations in the dissipation, which is needed also for, e.g., the existence of transport coefficients. Because of this generality the resulting steady state fluctuation relation has the same degree of robustness as do equilibrium thermodynamic equalities. The steady state fluctuation relation for the dissipation stands in contrast with the one for the phase space compression factor, whose convergence is problematic, for systems close to equilibrium. We examine some model dynamics that have been considered previously, and show how they are described in the context of this work.  相似文献   

11.
12.
13.
The extremization of the information-theoretic measures (Fisher information, Shannon entropy, Tsallis entropy), which complementary describe the spreading of the physical states of natural systems, gives rise to fundamental equations of motion and/or conservation laws. At times, the associated extreme entropy distributions are known for some given constraints, usually moments or radial expectation values. In this work, first we give the existence conditions of the maxent probability distributions in a D-dimensional scenario where two moments (not necessarily of consecutive order) are known. Then we find general relations which involve four elements (the extremized entropy, the other two information-theoretic measures and the variance of the extremum density) in scenarios with different dimensionalities and moment constraints.  相似文献   

14.
The mesoscopic properties of a plasma in a cylindrical magnetic field are investigated from the view point of test-particle dynamics. When the system has enough time and spatial symmetries, a Hamiltonian of a test particle is completely integrable and can be reduced to a single degree of freedom Hamiltonian for each initial state. The reduced Hamiltonian sometimes has unstable fixed points (saddle points) and associated separatrices. To choose among available dynamically compatible equilibrium states of the one particle density function of these systems we use a maximum entropy principle and discuss how the unstable fixed points affect the density profile or a local pressure gradient, and are able to create a steep profile that improves plasma confinement.  相似文献   

15.
In the study of transport in inhomogeneous systems it is common to construct transport equations invoking the inhomogeneous Fick law. The validity of this approach requires that at least two ingredients be present in the system. First, finite characteristic length and time scales associated with the dominant transport process must exist. Second, the transport mechanism must satisfy a microscopic symmetry: global reversibility. Global reversibility is often satisfied in nature. However, many complex systems exhibit a lack of finite characteristic scales. In this Letter we show how to construct a generalization of the inhomogeneous Fick law that does not require the existence of characteristic scales while still satisfying global reversibility.  相似文献   

16.
There has been a recent surge of interest in theory and methods for calculating the entropy of landscape patterns, but relatively little is known about the thermodynamic consistency of these approaches. I posit that for any of these methods to be fully thermodynamically consistent, they must meet three conditions. First, the computed entropies must lie along the theoretical distribution of entropies as a function of total edge length, which Cushman showed was a parabolic function following from the fact that there is a normal distribution of permuted edge lengths, the entropy is the logarithm of the number of microstates in a macrostate, and the logarithm of a normal distribution is a parabolic function. Second, the entropy must increase over time through the period of the random mixing simulation, following the expectation that entropy increases in a closed system. Third, at full mixing, the entropy will fluctuate randomly around the maximum theoretical value, associated with a perfectly random arrangement of the lattice. I evaluated these criteria in a test condition involving a binary, two-class landscape using the Cushman method of directly applying the Boltzmann relation (s = klogW) to permuted landscape configurations and measuring the distribution of total edge length. The results show that the Cushman method directly applying the classical Boltzmann relation is fully consistent with these criteria and therefore fully thermodynamically consistent. I suggest that this method, which is a direct application of the classical and iconic formulation of Boltzmann, has advantages given its direct interpretability, theoretical elegance, and thermodynamic consistency.  相似文献   

17.
We study how confining the equilibrium hard-sphere fluid to restrictive one- and two-dimensional channels with smooth interacting walls modifies its structure, dynamics, and entropy using molecular dynamics and transition-matrix Monte Carlo simulations. Although confinement strongly affects local structuring, the relationships between self-diffusivity, excess entropy, and average fluid density are, to an excellent approximation, independent of channel width or particle-wall interactions. Thus, thermodynamics can be used to predict how confinement impacts dynamics.  相似文献   

18.
In this study, we theoretically investigated a generalized stochastic Loewner evolution (SLE) driven by reversible Langevin dynamics in the context of non-equilibrium statistical mechanics. Using the ability of Loewner evolution, which enables encoding of non-equilibrium systems into equilibrium systems, we formulated the encoding mechanism of the SLE by Gibbs entropy-based information-theoretic approaches to discuss its advantages as a means to better describe non-equilibrium systems. After deriving entropy production and flux for the 2D trajectories of the generalized SLE curves, we reformulated the system’s entropic properties in terms of the Kullback–Leibler (KL) divergence. We demonstrate that this operation leads to alternative expressions of the Jarzynski equality and the second law of thermodynamics, which are consistent with the previously suggested theory of information thermodynamics. The irreversibility of the 2D trajectories is similarly discussed by decomposing the entropy into additive and non-additive parts. We numerically verified the non-equilibrium property of our model by simulating the long-time behavior of the entropic measure suggested by our formulation, referred to as the relative Loewner entropy.  相似文献   

19.
ABSTRACT

We report a numerical test of the Adam–Gibbs relation for the TIP4P/2005 model of water. The configurational entropy is here evaluated as the logarithm of the number of different basins in the potential energy landscape sampled in equilibrium conditions. Despite the non-monotonic behaviour which characterise the density dependence of the diffusion coefficient, the Adam–Gibbs relation is satisfied within the numerical precision in a wide range of densities and temperatures. We also show that expressions based on the excess entropy (the logarithm of the number of sampled microstates in phase space) fail in the region of densities where a tetrahedral hydrogen bond network develops.  相似文献   

20.
We propose the study of quantum games from the point of view of quantum information theory and statistical mechanics. Every game can be described by a density operator, the von Neumann entropy and the quantum replicator dynamics. There exists a strong relationship between game theories, information theories and statistical physics. The density operator and entropy are the bonds between these theories. The analysis we propose is based on the properties of entropy, the amount of information that a player can obtain about his opponent and a maximum or minimum entropy criterion. The natural trend of a physical system is to its maximum entropy state. The minimum entropy state is a characteristic of a manipulated system, i.e., externally controlled or imposed. There exist tacit rules inside a system that do not need to be specified or clarified and search the system equilibrium based on the collective welfare principle. The other rules are imposed over the system when one or many of its members violate this principle and maximize its individual welfare at the expense of the group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号