首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We propose, and illustrate via a neural network example, two different approaches to coarse-graining large heterogeneous networks. Both approaches are inspired from, and use tools developed in, methods for uncertainty quantification (UQ) in systems with multiple uncertain parameters – in our case, the parameters are heterogeneously distributed on the network nodes. The approach shows promise in accelerating large scale network simulations as well as coarse-grained fixed point, periodic solution computation and stability analysis. We also demonstrate that the approach can successfully deal with structural as well as intrinsic heterogeneities.  相似文献   

2.
3.
Determining community structure in networks is fundamental to the analysis of the structural and functional properties of those networks, including social networks, computer networks, and biological networks. Modularity function QQ, which was proposed by Newman and Girvan, was once the most widely used criterion for evaluating the partition of a network into communities. However, modularity QQ is subject to a serious resolution limit. In this paper, we propose a new function for evaluating the partition of a network into communities. This is called community coefficient CC. Using community coefficient CC, we can automatically identify the ideal number of communities in the network, without any prior knowledge. We demonstrate that community coefficient CC is superior to the modularity QQ and does not have a resolution limit. We also compared the two widely used community structure partitioning methods, the hierarchical partitioning algorithm and the normalized cuts (Ncut) spectral partitioning algorithm. We tested these methods on computer-generated networks and real-world networks whose community structures were already known. The Ncut algorithm and community coefficient CC were found to produce better results than hierarchical algorithms. Unlike several other community detection methods, the proposed method effectively partitioned the networks into different community structures and indicated the correct number of communities.  相似文献   

4.
We propose a novel weakly-coupled three-spatial-mode rectangular-ring core fiber for short-reach mode-division multiplexing (MDM) networks in C?+?L band. We investigate the influence of geometrical parameters on neff, min?neff, and Aeff with regions that meet the three-spatial-mode condition of the proposed fiber. Bending loss of each guided mode and DMD between adjacent spatial modes are also studied. Large effective refractive index difference between adjacent spatial modes is achieved with min?neff?~?0.004. Results imply that the designed fiber can simplify or eliminate MIMO-DSP for short-reach MDM networks such as optical interconnects, data centers, and optical access networks.  相似文献   

5.
The cortex is a very large network characterized by a complex connectivity including at least two scales: a microscopic scale at which the interconnections are non-specific and very dense, while macroscopic connectivity patterns connecting different regions of the brain at larger scale are extremely sparse. This motivates to analyze the behavior of networks with multiscale coupling, in which a neuron is connected to its \(v(N)\) nearest-neighbors where \(v(N)=o(N)\) , and in which the probability of macroscopic connection between two neurons vanishes. These are called singular multi-scale connectivity patterns. We introduce a class of such networks and derive their continuum limit. We show convergence in law and propagation of chaos in the thermodynamic limit. The limit equation obtained is an intricate non-local McKean–Vlasov equation with delays which is universal with respect to the type of micro-circuits and macro-circuits involved.  相似文献   

6.
7.
8.
Preferential attachment networks with power law exponent \(\tau >3\) are known to exhibit a phase transition. There is a value \(\rho _{\mathrm{c}}>0\) such that, for small edge densities \(\rho \le \rho _{\mathrm{c}}\) every component of the graph comprises an asymptotically vanishing proportion of vertices, while for large edge densities \(\rho >\rho _{\mathrm{c}}\) there is a unique giant component comprising an asymptotically positive proportion of vertices. In this paper we study the decay in the size of the giant component as the critical edge density is approached from above. We show that the size decays very rapidly, like \(\exp (-c/ \sqrt{\rho -\rho _{\mathrm{c}}})\) for an explicit constant \(c>0\) depending on the model implementation. This result is in contrast to the behaviour of the class of rank-one models of scale-free networks, including the configuration model, where the decay is polynomial. Our proofs rely on the local neighbourhood approximations of Dereich and Mörters (Ann Probab 41(1):329–384, 2013) and recent progress in the theory of branching random walks (Gantert et al. in Ann Inst Henri Poincaré Probab Stat 47(1):111–129, 2011).  相似文献   

9.
We study the macroscopic conduction properties of large but finite binary networks with conducting bonds. By taking a combination of a spectral and an averaging based approach we derive asymptotic formulae for the conduction in terms of the component proportions pp and the total number of components NN. These formulae correctly identify both the percolation limits and also the emergent power-law behaviour between the percolation limits and show the interplay between the size of the network and the deviation of the proportion from the critical value of p=1/2p=1/2. The results compare excellently with a large number of numerical simulations.  相似文献   

10.
In this paper we propose a reshuffling approach to empirical analyze individual's labeling behavior in signed social networks. In our approach, each individual is assumed to have the ability to re-label his/her neighbors randomly with the parameters ps and p+. Many reshuffled networks, which have the same topological structure and different signs' configuration, are built through applying our approach to the given three signed social networks. The entropy Sout and the giant component ρG for each reshuffled networks are calculated and analyzed. We find that there exist two kinds of individual's labeling behavior according to the suppressed effect of Sout and the exponent α in the relationship of ρG and q+. Additionally, the suppressed effect of Sout shows the non-randomness factor in individual's labeling behavior. These results offer new insights to understand human's behavior in online social networks.  相似文献   

11.
Studying earthquakes and the associated geodynamic processes based on the complex network theory enables us to learn about the universal features of the earthquake phenomenon. In addition, we can determine new indices for identification of regions geophysically. It was found that earthquake networks are scale free and its degree distribution obeys the power law. Here we claim that the qq-exponential function is better than power law model for fitting the degree distribution. We also study the behavior of qq parameter (nonextensivity measure) with respect to resolution. It was previously asserted in Eur. Phys. J. B (2012) 85: 23; that the topological characteristics of earthquake networks are dependent on each other for large values of the resolution. A peak in the plot of qq against resolution determines the beginning of the assertion range.  相似文献   

12.
The configuration model generates random graphs with any given degree distribution, and thus serves as a null model for scale-free networks with power-law degrees and unbounded degree fluctuations. For this setting, we study the local clustering c(k), i.e., the probability that two neighbors of a degree-k node are neighbors themselves. We show that c(k) progressively falls off with k and the graph size n and eventually for \(k=\varOmega (\sqrt{n})\) settles on a power law \(c(k)\sim n^{5-2\tau }k^{-2(3-\tau )}\) with \(\tau \in (2,3)\) the power-law exponent of the degree distribution. This fall-off has been observed in the majority of real-world networks and signals the presence of modular or hierarchical structure. Our results agree with recent results for the hidden-variable model and also give the expected number of triangles in the configuration model when counting triangles only once despite the presence of multi-edges. We show that only triangles consisting of triplets with uniquely specified degrees contribute to the triangle counting.  相似文献   

13.
14.
We consider an agent-based model with exponentially distributed waiting times in which two types of agents interact locally over a graph, and based on this interaction and on the value of a common intolerance threshold \(\tau \), decide whether to change their types. This is equivalent to a zero-temperature ising model with Glauber dynamics, an asynchronous cellular automaton with extended Moore neighborhoods, or a Schelling model of self-organized segregation in an open system, and has applications in the analysis of social and biological networks, and spin glasses systems. Some rigorous results were recently obtained in the theoretical computer science literature, and this work provides several extensions. We enlarge the intolerance interval leading to the expected formation of large segregated regions of agents of a single type from the known size \(\epsilon >0\) to size \(\approx 0.134\). Namely, we show that for \(0.433< \tau < 1/2\) (and by symmetry \(1/2<\tau <0.567\)), the expected size of the largest segregated region containing an arbitrary agent is exponential in the size of the neighborhood. We further extend the interval leading to expected large segregated regions to size \(\approx 0.312\) considering “almost segregated” regions, namely regions where the ratio of the number of agents of one type and the number of agents of the other type vanishes quickly as the size of the neighborhood grows. In this case, we show that for \(0.344 < \tau \le 0.433\) (and by symmetry for \(0.567 \le \tau <0.656\)) the expected size of the largest almost segregated region containing an arbitrary agent is exponential in the size of the neighborhood. This behavior is reminiscent of supercritical percolation, where small clusters of empty sites can be observed within any sufficiently large region of the occupied percolation cluster. The exponential bounds that we provide also imply that complete segregation, where agents of a single type cover the whole grid, does not occur with high probability for \(p=1/2\) and the range of intolerance considered.  相似文献   

15.
We report the statistical properties of three bus-transport networks (BTN) in three different cities of China. These networks are composed of a set of bus lines and stations serviced by these. Network properties, including the degree distribution, clustering and average path length are studied in different definitions of network topology. We explore scaling laws and correlations that may govern intrinsic features of such networks. Besides, we create a weighted network representation for BTN with lines mapped to nodes and number of common stations to weights between lines. In such a representation, the distributions of degree, strength and weight are investigated. A linear behavior between strength and degree s(k)∼ks(k)k is also observed.  相似文献   

16.

Background

To understand the functioning of distributed networks such as the brain, it is important to characterize their ability to integrate information. The paper considers a measure based on effective information, a quantity capturing all causal interactions that can occur between two parts of a system.

Results

The capacity to integrate information, or Φ, is given by the minimum amount of effective information that can be exchanged between two complementary parts of a subset. It is shown that this measure can be used to identify the subsets of a system that can integrate information, or complexes. The analysis is applied to idealized neural systems that differ in the organization of their connections. The results indicate that Φ is maximized by having each element develop a different connection pattern with the rest of the complex (functional specialization) while ensuring that a large amount of information can be exchanged across any bipartition of the network (functional integration).

Conclusion

Based on this analysis, the connectional organization of certain neural architectures, such as the thalamocortical system, are well suited to information integration, while that of others, such as the cerebellum, are not, with significant functional consequences. The proposed analysis of information integration should be applicable to other systems and networks.
  相似文献   

17.
Neural networks composed of neurons withQ N states and synapses withQ states are studied analytically and numerically. Analytically it is shown that these finite-state networks are much more efficient at information storage than networks with continuous synapses. In order to take the utmost advantage of networks with finite-state elements, a multineuron and multisynapse coding scheme is introduced which allows the simulation of networks having 1.0×109 couplings at a speed of 7.1×109 coupling evaluations per second on asingle processor of the Cray-YMP. A local learning algorithm is also introduced which allows for the efficient training of large networks with finite-state elements.  相似文献   

18.
Studies from complex networks have increased in recent years, and different applications have been utilized in geophysics. Seismicity represents a complex and dynamic system that has open questions related to earthquake occurrence. In this work, we carry out an analysis to understand the physical interpretation of two metrics of complex systems: the slope of the probability distribution of connectivity (γ) and the betweenness centrality (BC). To conduct this study, we use seismic datasets recorded from three large earthquakes that occurred in Chile: the Mw8.2 Iquique earthquake (2014), the Mw8.4 Illapel earthquake (2015) and the Mw8.8 Cauquenes earthquake (2010). We find a linear relationship between the b-value and the γ value, with an interesting finding about the ratio between the b-value and γ that gives a value of ∼0.4. We also explore a possible physical meaning of the BC. As a first result, we find that the behaviour of this metric is not the same for the three large earthquakes, and it seems that this metric is not related to the b-value and coupling of the zone. We present the first results about the physical meaning of metrics from complex networks in seismicity. These first results are promising, and we hope to be able to carry out further analyses to understand the physics that these complex network parameters represent in a seismic system.  相似文献   

19.
Social interactions vary in time and appear to be driven by intrinsic mechanisms thatshape the emergent structure of social networks. Large-scale empirical observations ofsocial interaction structure have become possible only recently, and modelling theirdynamics is an actual challenge. Here we propose a temporal network model which builds onthe framework of activity-driven time-varying networks with memory. Themodel integrates key mechanisms that drive the formation of social ties – socialreinforcement, focal closure and cyclicclosure, which have been shown to give rise to community structure andsmall-world connectedness in social networks. We compare the proposed model with areal-world time-varying network of mobile phone communication, and show that they shareseveral characteristics from heterogeneous degrees and weights to rich communitystructure. Further, the strong and weak ties that emerge from the model follow similarweight-topology correlations as real-world social networks, including the role of weakties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号