首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Dehghan  M. Keyanpour 《Optimization》2017,66(7):1157-1176
This paper presents a numerical scheme for solving fractional optimal control. The fractional derivative in this problem is in the Riemann–Liouville sense. The proposed method, based upon the method of moments, converts the fractional optimal control problem to a semidefinite optimization problem; namely, the nonlinear optimal control problem is converted to a convex optimization problem. The Grunwald–Letnikov formula is also used as an approximation for fractional derivative. The solution of fractional optimal control problem is found by solving the semidefinite optimization problem. Finally, numerical examples are presented to show the performance of the method.  相似文献   

2.
This paper develops an approximate method, based on the combination of epsilon penalty and variational methods, for solving a class of multidimensional fractional optimal control problems. The fractional derivative is in the Caputo sense. In the presented method, utilizing the epsilon method, the given optimal control problem transforms into an unconstrained optimization problem; then, the equivalent variational equality is derived for the given unconstrained problem. The variational equality is approximately solved by applying a spectral method.  相似文献   

3.
In this paper, epsilon and Ritz methods are applied for solving a general class of fractional constrained optimization problems. The goal is to minimize a functional subject to a number of constraints. The functional and constraints can have multiple dependent variables, multiorder fractional derivatives, and a group of initial and boundary conditions. The fractional derivative in the problem is in the Caputo sense. The constrained optimization problems include isoperimetric fractional variational problems (IFVPs) and fractional optimal control problems (FOCPs). In the presented approach, first by implementing epsilon method, we transform the given constrained optimization problem into an unconstrained problem, then by applying Ritz method and polynomial basis functions, we reduce the optimization problem to the problem of optimizing a real value function. The choice of polynomial basis functions provides the method with such a flexibility that initial and boundary conditions can be easily imposed. The convergence of the method is analytically studied and some illustrative examples including IFVPs and FOCPs are presented to demonstrate validity and applicability of the new technique.  相似文献   

4.
In this paper, we introduce a set of functions called fractional-order Legendre functions (FLFs) to obtain the numerical solution of optimal control problems subject to the linear and nonlinear fractional integro-differential equations. We consider the properties of these functions to construct the operational matrix of the fractional integration. Also, we achieved a general formulation for operational matrix of multiplication of these functions to solve the nonlinear problems for the first time. Then by using these matrices the mentioned fractional optimal control problem is reduced to a system of algebraic equations. In fact the functions of the problem are approximated by fractional-order Legendre functions with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem converts to an optimization problem, which can then be solved numerically. The convergence of the method is discussed and finally, some numerical examples are presented to show the efficiency and accuracy of the method.  相似文献   

5.
In this paper, we discuss a class of fractional optimal control problems, where the system dynamical constraint comprises a combination of classical and fractional derivatives. The necessary optimality conditions are derived and shown that the conditions are sufficient under certain assumptions. Additionally, we design a well-organized algorithm to obtain the numerical solution of the proposed problem by exercising Laguerre polynomials. The key motive associated with the present approach is to convert the concerned fractional optimal control problem to an equivalent standard quadratic programming problem with linear equality constraints. Given examples illustrate the computational technique of the method together with its efficiency and accuracy. Graphical representations are provided to analyze the performance of the state and control variables for distinct prescribed fractions.  相似文献   

6.
This paper focuses on the study of finding efficient solutions in fractional multicriteria optimization problems with sum of squares convex polynomial data. We first relax the fractional multicriteria optimization problems to fractional scalar ones. Then, using the parametric approach, we transform the fractional scalar problems into non-fractional problems. Consequently, we prove that, under a suitable regularity condition, the optimal solution of each non-fractional scalar problem can be found by solving its associated single semidefinite programming problem. Finally, we show that finding efficient solutions in the fractional multicriteria optimization problems is tractable by employing the epsilon constraint method. In particular, if the denominators of each component of the objective functions are same, then we observe that efficient solutions in such a problem can be effectively found by using the hybrid method. Some numerical examples are given to illustrate our results.  相似文献   

7.
Three problems closely related to the classical unbiased optimal filtration problem: an unbiased optimal filtration problem without a control in the system,a biased optimal filtration problem where the bias does not exceed a given value, and the joint problem of stabilization and optimal filtration. It is proposed these problems be reduced to ones of nonlinear optimization. For unbiased filtration with no control, conditions are provided that allow the one for classical unbiasedness to be weakened or excluded for the filter. A new estimate of the bias of the mean filtration error is proposed.  相似文献   

8.
We consider optimal control problems with functional given by the ratio of two integrals (fractional optimal control problems). In particular, we focus on a special case with affine integrands and linear dynamics with respect to state and control. Since the standard optimal control theory cannot be used directly to solve a problem of this kind, we apply Dinkelbach’s approach to linearize it. Indeed, the fractional optimal control problem can be transformed into an equivalent monoparametric family {Pq} of linear optimal control problems. The special structure of the class of problems considered allows solving the fractional problem either explicitly or requiring straightforward classical numerical techniques to solve a single equation. An application to advertising efficiency maximization is presented. This work was partially supported by the Università Ca’ Foscari, Venezia, Italy, the MIUR (PRIN cofinancing 2005), the Council for Grants (under RF President) and State Aid to Fundamental Science Schools (Grant NSh-4113.2008.6). We thank Angelo Miele, Panos Pardalos and the anonymous referees for comments and suggestions.  相似文献   

9.
In this article, a direct pseudospectral method based on Lagrange interpolating functions with fractional power terms is used to solve the fractional optimal control problem. As most applied fractional problems have solutions in terms of the fractional power, using appropriate characteristic nodal-based functions with suitable power leads to a more accurate pseudospectral approximation of the solution. The Lagrange interpolating functions and their fractional derivatives belong to the Müntz space; such functions are employed to show that a relationship exists between the Karush–Kukn–Tucker conditions associated with nonlinear programming and the first optimal necessary conditions. Furthermore, the convergence of the method is investigated. The obtained numerical results are an indication of the behavior of the algorithm.  相似文献   

10.
The main objective of this study is to discuss the optimum correction of linear inequality systems and absolute value equations (AVE). In this work, a simple and efficient feasible direction method will be provided for solving two fractional nonconvex minimization problems that result from the optimal correction of a linear system. We will show that, in some special-but frequently encountered-cases, we can solve convex optimization problems instead of not-necessarily-convex fractional problems. And, by using the method of feasible directions, we solve the optimal correction problem. Some examples are provided to illustrate the efficiency and validity of the proposed method.  相似文献   

11.
Set-valued optimization problems are important and fascinating field of optimization theory and widely applied to image processing, viability theory, optimal control and mathematical economics. There are two types of criteria of solutions for the set-valued optimization problems: the vector criterion and the set criterion. In this paper, we adopt the set criterion to study the optimality conditions of constrained set-valued optimization problems. We first present some characterizations of various set order relations using the classical oriented distance function without involving the nonempty interior assumption on the ordered cones. Then using the characterizations of set order relations, necessary and sufficient conditions are derived for four types of optimal solutions of constrained set optimization problem with respect to the set order relations. Finally, the image space analysis is employed to study the c-optimal solution of constrained set optimization problems, and then optimality conditions and an alternative result for the constrained set optimization problem are established by the classical oriented distance function.  相似文献   

12.
A method is presented for direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using global collocation at Legendre-Gauss-Radau (LGR) points. A key feature of the method is that it provides an accurate way to map the KKT multipliers of the nonlinear programming problem to the costates of the optimal control problem. More precisely, it is shown that the dual multipliers for the discrete scheme correspond to a pseudospectral approximation of the adjoint equation using polynomials one degree smaller than that used for the state equation. The relationship between the coefficients of the pseudospectral scheme for the state equation and for the adjoint equation is established. Also, it is shown that the inverse of the pseudospectral LGR differentiation matrix is precisely the matrix associated with an implicit LGR integration scheme. Hence, the method presented in this paper can be thought of as either a global implicit integration method or a pseudospectral method. Numerical results show that the use of LGR collocation as described in this paper leads to the ability to determine accurate primal and dual solutions for both finite and infinite-horizon optimal control problems.  相似文献   

13.
The paper at hand presents a combination of optimal control approaches for PDEs with meshless discretizations. Applying a classical Lagrangian type particle method to optimization problems with hyperbolic constraints, several adjoint-based strategies differing in the sequential order of optimization and discretization of the Lagrangian or Eulerian problem formulation are proposed and compared. The numerical results confirm the theoretically predicted independence principle of the optimization approaches and show the expected convergence behavior. Moreover, they exemplify the superiority of meshless methods over the conventional mesh-based approaches for the numerical handling and optimization of problems with time-dependent geometries and freely moving boundaries.  相似文献   

14.
In this paper, we consider a class of optimal control problems subject to equality terminal state constraints and continuous state and control inequality constraints. By using the control parametrization technique and a time scaling transformation, the constrained optimal control problem is approximated by a sequence of optimal parameter selection problems with equality terminal state constraints and continuous state inequality constraints. Each of these constrained optimal parameter selection problems can be regarded as an optimization problem subject to equality constraints and continuous inequality constraints. On this basis, an exact penalty function method is used to devise a computational method to solve these optimization problems with equality constraints and continuous inequality constraints. The main idea is to augment the exact penalty function constructed from the equality constraints and continuous inequality constraints to the objective function, forming a new one. This gives rise to a sequence of unconstrained optimization problems. It is shown that, for sufficiently large penalty parameter value, any local minimizer of the unconstrained optimization problem is a local minimizer of the optimization problem with equality constraints and continuous inequality constraints. The convergent properties of the optimal parameter selection problems with equality constraints and continuous inequality constraints to the original optimal control problem are also discussed. For illustration, three examples are solved showing the effectiveness and applicability of the approach proposed.  相似文献   

15.
The accurate solution of optimal control problems is crucial in many areas of engineering and applied science. For systems which are described by a nonlinear set of differential-algebraic equations, these problems have been shown to often contain multiple local minima. Methods exist which attempt to determine the global solution of these formulations. These algorithms are stochastic in nature and can still get trapped in local minima. There is currently no deterministic method which can solve, to global optimality, the nonlinear optimal control problem. In this paper a deterministic global optimization approach based on a branch and bound framework is introduced to address the nonlinear optimal control problem to global optimality. Only mild conditions on the differentiability of the dynamic system are required. The implementa-tion of the approach is discussed and computational studies are presented for four control problems which exhibit multiple local minima.  相似文献   

16.
In this paper, we present a new approach to solve a class of optimal discrete-valued control problems. This type of problem is first transformed into an equivalent two-level optimization problem involving a combination of a discrete optimization problem and a standard optimal control problem. The standard optimal control problem can be solved by existing optimal control software packages such as MISER 3.2. For the discrete optimization problem, a discrete filled function method is developed to solve it. A numerical example is solved to illustrate the efficiency of our method.  相似文献   

17.
实践表明 ,对状态变量的递增量较大的报童问题 ,应用传统的离散型报童模型所确定的最优决策量与实际最优方案之间可能存在较大偏差 .分析了这一偏差出现的原因 ,提出了状态变量递增量较大的情况下的离散变量报童模型和求解方法 ,并证明这一模型比原模型得出的求解结果更为精确 .最后 ,通过算例验证了新模型对原模型的改进 .  相似文献   

18.
In this paper, we propose a new deterministic global optimization method for solving nonlinear optimal control problems in which the constraint conditions of differential equations and the performance index are expressed as polynomials of the state and control functions. The nonlinear optimal control problem is transformed into a relaxed optimal control problem with linear constraint conditions of differential equations, a linear performance index, and a matrix inequality condition with semidefinite programming relaxation. In the process of introducing the relaxed optimal control problem, we discuss the duality theory of optimal control problems, polynomial expression of the approximated value function, and sum-of-squares representation of a non-negative polynomial. By solving the relaxed optimal control problem, we can obtain the approximated global optimal solutions of the control and state functions based on the degree of relaxation. Finally, the proposed global optimization method is explained, and its efficacy is proved using an example of its application.  相似文献   

19.
Postnov  S. S. 《Doklady Mathematics》2017,96(2):531-534

Two optimal control problems are studied for linear stationary systems of fractional order with lumped variables whose dynamics is described by equations with Hadamard derivative, a minimum-norm control problem and a time-optimal problem with a constraint on the norm of the control. The setting of the problem with nonlocal initial conditions is considered. Admissible controls are sought in the class of functions p-integrable on an interval for some p. The main approach to the study is based on the moment method. The well-posedness and solvability of the moment problem are substantiated. For several special cases, the optimal control problems under consideration are solved analytically. An analogy between the obtained results and known results for systems of integer and fractional order described by equations with Caputo and Riemann–Liouville derivatives is specified.

  相似文献   

20.
In this paper an ultraspherical integral method is proposed to solve optimal control problems governed by ordinary differential equations. Ultraspherical approximation method reduced the problem to a constrained optimization problem. Penalty leap frog method is presented to solve the resulting constrained optimization problem. Error estimates for the ultraspherical approximations are derived and a technique that gives an optimal approximation of the problems is introduced. Numerical results are included to confirm the efficiency and accuracy of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号