首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Reaction Behaviour of Copper(I) and Copper(II) Salts Towards P(C6H4CH2NMe2‐2)3 ‐ the Solid‐State Structures of {[P(C6H4CH2NMe2‐2)3]CuOClO3}ClO4, {[P(C6H4CH2NMe2‐2)3]Cu}ClO4, [P(C6H4CH2NMe2‐2)3]CuONO2 and [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 The reaction behaviour of P(C6H4CH2NMe2‐2)3 ( 1 ) towards different copper(II) and copper(I) salts of the type CuX2 ( 2a : X = BF4, 2b : X = PF6, 2c : X = ClO4, 2d : X = NO3, 2e : X = Cl, 2f : X = Br, 13 : X = O2CMe) and CuX ( 5a : X = ClO4, 5b : X = NO3, 5c : X = Cl, 5d : X = Br) is discussed. Depending on X, the transition metal complexes [P(C6H4CH2NMe2‐2)3Cu]X2 ( 3a : X = BF4, 3b : X = PF6), {[P(C6H4CH2NMe2‐2)3]CuX}X ( 4 : X = ClO4, 11a : X = Cl, 11b : X = Br, 14 : X = O2CMe), {[P(C6H4CH2NMe2‐2)3]Cu}ClO4 ( 6 ), [P(C6H4CH2NMe2‐2)3]CuX ( 7a : X = Cl, 7b : X = Br, 10 : X = ONO2), [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 ( 9 ) and [P(C6H4CH2NMe2‐2)3]CuCl}CuCl2 ( 12 ) are accessible. While in 3a , 3b and 6 the phosphane 1 preferentially acts as tetrapodale ligand, in all other species only the phosphorus atom and two of the three C6H4CH2NMe2 side‐arms are datively‐bound to the appropriate copper ion. In solution a dynamic behaviour of the latter species is observed. Due to the coordination ability of X in 3a , 3b and 6 non‐coordinating anions X are present. However, in 4 one of the two perchlorate ions forms a dative oxygen‐copper bond and the second perchlorate ion acts as counter ion to {[P(C6H4CH2NMe2‐2)3]CuOClO3}+. In 7 , 9 and 10 the fragments X (X = Cl, Br, ONO2) form a σ‐bond with the copper(I) ion. The acetate moiety in 14 acts as chelating ligand as it could be shown by IR‐spectroscopic studies. All newly synthesised cationic and neutral copper(I) and copper(II) complexes are representing stable species. Redox processes are involved in the formation of 9 and 12 by reacting 1 with 2 . The solid‐state structures of 4 , 6 , 9 and 10 are reported. In the latter complexes the copper(II) ( 4 ) or copper(I) ion ( 6 , 9 , 10 ) possesses the coordination number 4. This is achieved by the formation of a phosphorus‐ and two nitrogen‐copper‐ ( 4 , 9 , 10 ) or three ( 6 ) nitrogen‐copper dative bonds and a coordinating ( 4 ) or σ‐binding ( 9 , 10 ) ligand X. In 6 all three nitrogen and the phosphorus atoms are coordinatively bound to copper, while X acts as non‐coordinating counter‐ion. Based on this, the respective copper ion occupies a distorted tetrahedral coordination sphere. While in 4 and 10 a free, neutral Me2NCH2 side‐arm is present, which rapidly exchanges in solution with the coordinatively‐bound Me2NCH2 fragments, this unit is protonated in 10 . NO3 acts as counter ion to the CH2NMe2H+ moiety. In all structural characterized complexes 6‐membered boat‐like CuPNC3 cycles are present.  相似文献   

5.
6.
New Syntheses and Crystal Structures of Bis(fluorophenyl) Mercury, Hg(Rf)2 (Rf = C6F5, 2, 3, 4, 6‐F4C6H, 2, 3, 5, 6‐F4C6H, 2, 4, 6‐F3C6H2, 2, 6‐F2C6H3) Bis(fluorophenyl) mercury compounds, Hg(Rf)2 (Rf = C6F5, C6HF4, C6H2F3, C6H3F2), are prepared in good yields by the reactions of HgF2 with Me3SiRf. The crystal structures of Hg(2, 3, 4, 6‐F4C6H)2 (monoclinic, P21/n), Hg(2, 3, 5, 6‐F4C6H)2 (monoclinic, C2/m), Hg(2, 4, 6‐F3C6H2)2 (monoclinic, P21/c) and Hg(2, 6‐F2C6H3)2 (triclinic, P1) are described.  相似文献   

7.
In the title compound 1 , the macrocylic ligand DB18C6 arranges to build two types of channels in which either only water or water and H3O+ molecules are stacked to linear polymers. The counter ions, I3, also form chains and fill in the spaces left between the parallel stacks of the crown ethers. Compound 1 should therefore possess interesting conducting properties and might as well serve as model for biological water channels.  相似文献   

8.
Si takes a rest : A bulky σ‐bound terphenyl substituent and a π‐bound Cp* ligand enable the isolation and full characterization of the first aryl‐substituted, monomeric silicon(II) compound 1 , which can be regarded as the “resting state” of a true silylene containing a σ‐bound Cp* group. The conformation of the aryl group prevents aryl–Si π back‐bonding.

  相似文献   


9.
Reaction of Ndcl3 with AlCl3 and mesitylene in benzene gives complex [Nd(η6‐1, 3, 5‐C6H3Me3)‐(AlCl4)3](C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X‐ray diffractions. The X‐ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P21/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, β = 90.85 (2)°, V = 3.2529 (6) nm3,Dc= 1.573 g/cm3, Z = 4. A comparison of bond parameters for all the reported Ln (η6‐Ar) (AlCl4)3 complexes indicates that the bond distance of La? C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.  相似文献   

10.
Bipy, Phen, and P(C6H4CH2NMe2‐2)3 in the Synthesis of Cationic Silver(I) Complexes; the Solid‐State Structures of [P(C6H4CH2NMe2‐2)3]AgOTf and [Ag(phen)2]OTf The reaction of [P(C6H4CH2NMe2‐2)3]AgX ( 1a , X = OTf; 1b , X = OClO3) with equimolar amounts of LcapL ( 2a , LcapL = 2, 2′‐bipyridine, bipy; 2b , LcapL = 4, 4′‐dimethyl‐2, 2′‐bipyridine, bipy′; 2c , LcapL = 1, 10‐phenanthroline, phen) leads to the formation of the cationic complexes {[P(C6H4CH2NMe2‐2)3]Ag(LcapL)}+X (LcapL = bipy: 3a , X = OTf; 3b , X = ClO4; LcapL = bipy′: 3c , X = OTf; 3d , X = ClO4; LcapL = phen: 3e , X = OTf; 3f , X = ClO4) in which the building blocks LcapL and P(C6H4CH2NMe2‐2)3 act as bidentate chelating ligands and are datively‐bound to the silver atom. Spectroscopic studies reveal that on the NMR time‐scale the phosphane group is dynamic with exchanging the respective Me2NCH2 built‐in arms. While complex 3e is stable in the solid‐state, it appeared that solutions of 3e start to decompose upon precipitation of colloidal silver when they are heated or irradiated with light, respectively. Appropriate work‐up of the reaction mixture allows the isolation of the phosphane P(C6H4CH2NMe2‐2)3 ( 5 ) along with [Ag(phen)2]OTf ( 4 ). The solid‐state structures of neutral 1a and cationic 4 are reported. Mononuclear 1a crystallizes in the monoclinic space group P21/c with the cell parameters a = 16.7763(2), b = 14.7892(2), c = 25.44130(10)Å, β = 106.1260(10), V = 6063.83(11)Å3 and Z = 4 with 8132 observed unique reflections (R1 = 0.0712), while 4 crystallizes in the monoclinic space group C2/c with the cell parameters a = 26.749(3), b = 7.1550(10), c = 26.077(3)Å, β = 113.503(2), V = 4576.8(10)Å3 and Z = 4 with 6209 observed unique reflections (R1 = 0.0481). The unit cell of 1a consists of two independent molecules. In both molecules the silver atom possesses a distorted tetrahedral coordination sphere and a boat‐like conformation for the six‐membered AgPNCH2C2/phenyl cycles is found. In 4 , as typical for 1a , the silver atom possesses the coordination number 4. The two phen ligands are tilted by 40.63°. The OTf group is acting as non‐coordinating counter ion.  相似文献   

11.
12.
13.
Synthesis and Crystal Structures of Bismuth Chalcogenolato Compounds Bi(SC6H5)3, Bi(SeC6H5)3, and Bi(S‐4‐CH3C6H4)3 Bismuth(III) acetate reacts with thiophenol in ethyl alcohol at 80 °C to yield Bi(SC6H5)3 ( 1 ). Slow cool down of the deep yellow mixture lead to the formation of orange crystals of 1 . The homotype phenylselenolato compound of bismuth Bi(SeC6H5)3 ( 2 ) has been prepared by the reaction of BiX3 (X = Cl, Br) with Se(C6H5)SiMe3 in diethyl ether. In the same way as Bi(SC6H5)3 ( 1 ) the reaction between bismuth(III) acetate and 4‐tolulenethiole results in red crystals of Bi(S‐4‐CH3C6H4)3 ( 3 ). In consideration of three longer Bi–E distances (intermolecular interactions, E = S; Se) the Bi(EPh)3 molecules form via face‐linked octahedra 1‐dimensional chains in the crystal lattice, while for 3 the 1‐dimensional chain is formed by face‐linked trigonal prisma. We reported herein the synthesis and structures of Bi(SC6H5)3 ( 1 ), Bi(SeC6H5)3 ( 2 ), and Bi(S‐4‐CH3C6H4)3 ( 3 ).  相似文献   

14.
Bubbling acetyl­ene gas slowly through a methanol solution of [(CO)6Fe2{μ‐SSe}] containing sodium acetate for 48 h at room temperature yields the double‐butterfly complex μ‐[ethane‐1,1,2,2‐tetra(selenido/sulfido)]bis[hexacarbonyldiiron(FeFe)], [Fe4(C2H2S2Se2)(CO)12]. The molecular structure was established by single‐crystal X‐ray diffraction techniques. The structure consists of two Fe2SSe butterfly units linked to each other through a bridging HC—CH group. The mol­ecule has twofold symmetry and the two Fe atoms have distorted octahedral geometries.  相似文献   

15.
A general synthesis of 6‐azaoxindoles, substituted in the 3‐ and 5‐position, has been developed starting from 4‐methoxycarbomethyl‐3‐nitropyridine, via hydrogenation of the nitro group and cyclisation of the resulting 3‐amino‐4‐methoxycarbomethyl‐pyridine.  相似文献   

16.
17.
The sterically encumbered ter­phenyl halides 2′‐chloro‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49Cl, (I), 2′‐bromo‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49Br, (II), and 2′‐iodo‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49I, (III), crystallize in space group Pnma. They are isomorphous and isostructural with a plane of symmetry through the centre of the mol­ecule. The C–halide bond distances are 1.745 (3), 1.910 (4) and 2.102 (6) Å for (I)–(III), respectively.  相似文献   

18.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

19.
The crystal and molecular structure of the complex containing cobalt-carbon and iron-sulfur cluster cores, (μ-p-CH3C6H4C2S) (μ-n-C3H7S)Fe2(CO)6Co2(CO)6, has been determined by X-ray diffraction method. The crystals are triclinic, space group P&1bar;, with a — 9.139(2), b=9.610(1), c-17.183(2) Å, α = 84.36(1), β-89.45(1), γ=88.15(1)°, V-1501.0 Å3; Z=2, Dc=1.74 g/cm3. R=0.072, Rw=0.081. The results of the structure determination show a cobalt-carbon cluster core formed through the reaction of (μ-p-CH3C6H4C2S)(μ-n-C3H7S)Fe2(CO)6 with Co2(CO)8. In the cobalt-carbon cluster core, the bond length of the original C≡C lengthened to 1.324 Å which is close to the typical value of carbon-carbon double bond. The groups connecting the carbons of the cluster core are in cis position and lie on the opposite side of cobalt atoms. In this complex, the conformation of —SC3H7 is e-type, while that of —SC2C6H4CH3 is a-type.  相似文献   

20.
The o‐substituted hybrid phenylphosphines, PPh2(o‐C6H4NH2) and PPh2(o‐C6H4OH), could be deprotonated with LDA or n‐BuLi to yield PPh2(o‐C6H4NHLi) and PPh2(o‐C6H4OLi), respectively. When added to a solution of (η5‐C5H5)Fe(CO)2I at room temperature, these two lithiated reagents produce a chelated neutral complex 1 (η5‐C5H5)Fe(CO)[C(O)NH(o‐C6H4)PPh2C,P‐η2] for the former and mainly a zwitterionic complex 2 , (η5‐C5H5)Fe+(CO)2[PPh2(o‐C6H4O?)] for the latter. Complex 1 could easily be protonated and then decarbonylated to give 4 [(η5‐C5H5)Fe(CO){NH2(o‐C6H4)PPh2N,P‐η2}+]. Complexes 1 and 4‐I have been crystallographically characterized with X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号