首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Aromatic azobenzene derivatives are outstanding organic photochromic compounds that possess unique photochemical properties. These compounds are widely used in research and development for various applications, especially in information storage, owing to their ability to isomerize between cis (Z) and trans (E) forms under the influence of light of different wavelengths. On account of these advantages, many efforts have been made to generalize the use of azobenzene derivatives. Furthermore, ferrocene‐based polymers and derivatives are promising candidates for functional materials due to their unique redox properties. By interlinking ferrocene with azobenzene, novel functional materials can be obtained that will integrate the excellent properties of both and will provide new applications in various fields including information storage, ion recognition, molecular devices, etc. This article provides an overview of the synthesis, properties and applications of novel ferrocene‐based polymers and derivatives containing azobenzene units. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
《Chemphyschem》2003,4(1):67-71
Correlation of molecular organization in crystals and in ultrathin films is of fundamental interest in the design of molecular materials based on thin films. We have chosen as a test case, N‐(2,4‐dinitrophenyl)‐n‐octadecylamine (DNPOA), a potential candidate for the fabrication of Langmuir–Blodgett (LB) films for quadratic nonlinear optical applications. Like several other 4‐nitroaniline derivatives, DNPOA does not form stable monolayers at the air–water interface. This has precluded investigations of their organization in LB films. We have stabilized composite Langmuir films of DNPOA with the phospholipid molecule DSPC and fabricated their LB films. Successful growth of single crystals of DNPOA allowed structure determination and detailed analysis of molecular associations in the solid state. Electronic absorption spectra of DNPOA in solution, in the solid state and in the LB film are investigated. Modeling of the various spectral signatures by semiempirical computations on molecular clusters extracted from the crystal lattice provides insight into the correlation between the molecular organization in crystals and in LB films.  相似文献   

3.
Two electroactive polystyrene derivatives para‐ substituted with π‐conjugated oligothiophene, poly(5‐hexyl‐5″‐(4‐vinylphenyl)‐2,2′:5′,2″‐terthiophene) ( PH3TS ), and poly(5‐hexyl‐5″″‐(4‐vinylphenyl)‐2,2′:5′,2″:5″,2″′:5″′,2″″‐quinquethiophene) ( PH5TS ) have been successfully synthesized via the Stille coupling reaction between tributyltin postfunctionalized poly(4‐(2‐thiophenyl)styrene) ( PTS ) and bromo‐oligothiophene. The effect of the chain length of the pendant oligothiophenes on properties of the resulting polymers including solubility, thermal stability, optical absorption, and electroactivation energy levels has been studied by using a variety of techniques such as thermogravimetric analyzer, differential scanning calorimetry, UV–Vis, Fluorescence, and cyclic voltammetry. With shielding of the hexyl terminal groups attached to the pendant oligothiophene units, no obvious chain aggregation was observed for both PH3TS and PH5TS even in a poor solvent environment. When compared with conventional linear conjugated polymer systems, the concept of grafting electroactive units as pendant side chains via postfunctionalizing aliphatic polymers might offer a strategy to precisely synthesize new electroactive polymer materials for a number of organic electronic applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
New routes to ladder‐type phenylene materials 1 and 2 are described. The oligomers 1 and 2 , which possess a “3π‐2spiro” architecture, have been synthesized by using extended diketone derivatives 3 and 10 as key intermediates. The physicochemical properties of the new blue‐light emitter 2 were studied in detail and compared with those of the less‐extended 1 . Owing to the recent development of fluorenone derivatives and their corresponding more conjugated analogues as potential electron‐transport materials in organic light‐emitting diodes (OLEDs) and as n‐type materials for photovoltaic applications, we also report herein the thermal, optical and electrochemical behavior of the key intermediates, diketones 3 and 10 . Finally, the application of dispiro 2 as a new light‐emitting material in OLEDs is reported.  相似文献   

5.
Polystyrene‐b‐poly(1,2‐isoprene‐ran‐3,4‐isoprene) block copolymers with azobenzene side groups were synthesized by the esterification of azobenzene acid chloride with polystyrene‐b‐hydroxylated poly(1,2‐isoprene‐ran‐3,4‐isopenre) block copolymers for creating new photochromic materials. The resulting block copolymers with azobenzene side groups were characterized for structural, thermal, and morphological properties. IR and NMR spectroscopies confirmed that the polymers obtained had the expected structures. Differential scanning calorimetric measurements by heating runs clearly showed the glass transitions of polystyrene and polyisoprene main chains and two distinct first‐order transitions at temperatures of azobenzene side groups around 48 and 83 °C. The microstructure of these block copolymer films was investigated using both transmission electron microscopy (TEM) and near‐field optical microscopy (NOM). TEM images revealed typical microphase‐separated morphologies such as sphere, cylinder, and lamellar structures. The domain spacing of microphase‐separated cylindrical morphology in the NOM image agreed with that of the TEM results. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2406–2414, 2002  相似文献   

6.
Azobenzene linker molecules can be utilized to control peptide/protein function when they are ligated to appropriately spaced amino acid side chains of the peptide. This is because the photochemical E/Z isomerization of the azobenzene N?N double bond allows to switch peptide conformation between folded and unfolded. In this context, we have introduced carbohydrate‐functionalized azobenzene derivatives in order to advance the biocompatible properties of azobenzene peptide linkers. Chloroacetamide‐functionalized and O‐allylated carbohydrate derivatives were synthesized and conjugated with azobenzene to achieve new bifunctional cross‐linkers, in order to allow ligation to cysteine side chains by nucleophilic substitution or thiol‐ene reaction, respectively. The photochromic properties of the new linker glycoconjugates were determined and first ligation reactions performed.  相似文献   

7.
Two azobenzene containing 2‐oxazolines were used for labeling of a polyester with carboxylic end groups by the end‐capping method. The modification was performed under the conditions of either reactive processing or in a solution. Photochemical activity of the prepared polymers, as well as that of the modifiers was studied. The polymers prepared represent new photosensitive materials that undergo photochemical trans‐cis isomerizations and reverse cis‐trans reactions.  相似文献   

8.
A series of polythiophene derivatives with substantially higher azobenzene contents in the side chains were prepared via copolymerization of 3‐hexylthiophene with four different types of 4‐((4‐(phenyl)azo)phenoxy)alkyl‐3‐thienylacetate. The alkyl spacers with different lengths, i.e. butyl, hexyl, octyl and undecyl groups were used between the azobenzene group and the thiophene ring. The compositions, structures and thermal properties of these polythiophene derivatives were characterized. The structural dependence of photoluminescent emission, photochromic behavior of these copolymers were systematically studied and compared with poly(3‐hexylthiophene). The results show that the azobenzene substitution renders the polythiophene some interesting optical properties that can be modulated by UV light irradiation. In the azobenzene modified polythiophene, the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease significantly upon UV irradiation. The finding suggests that the photo‐induced transcis isomerization of the azobenzene pendant groups has a significant effect on photoluminescent emission, particularly when short spacers are used between azobenzene groups and the main chain. However, the effect becomes less prominent when longer spacers are used between the azobenzene group and the main chain. Furthermore, UV irradiation of the copolymers also resulted in an increase in intensity and broadening of bandwidth for the absorption peak associated with the polythiophene backbones. Again the magnitude of intensity changes upon UV irradiation were found to be dependent on the spacer length between the azobenzene group and polythiophene main chain. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The structure of the title compound, 4‐allyl‐2‐methoxy‐6‐[(4‐nitrophenyl)diazenyl]phenyl benzoate, C23H19N3O5, displays the characteristic features of azobenzene derivatives. The azobenzene moiety of the molecule has a trans configuration and in this moiety, average C—N and N=N bond lengths are 1.441 (3) and 1.241 (3) Å, respectively.  相似文献   

10.
Substituted oligothiophenes have a long history in the field of organic electronics, as they often combine outstanding electro‐optical properties with the ease of synthesis. To assist the rational selection of the most promising structures to be synthesized, there is the demand for tools that allow prediction of the properties of the materials. In this study, we present strategies for synthesis and computational characterization, with respect to the fluorescence behavior of oligothiophene‐based materials for organoelectronic applications. In a combined approach, sophisticated computational methodologies are directly compared to experimental results. The M06‐2X functional in combination with the polarizable continuum model in a state‐specific formulation for excited‐state solvation proved to be particularly reliable. In addition, a semiclassical approach for describing the vibrational broadening of the spectra is employed. As a result, a robust procedure for the prediction of the fluorescence spectra of oligothiophene derivatives is presented.  相似文献   

11.
Conjugated copolymers based on benzodithiophene (BDT) derivatives and thiophene‐quinoxaline‐thiophene (TQT) segments represent an efficient class of light harvesting materials for organic photovoltaic (OPV) applications. Commonly, BDT‐TQT copolymers are synthesized by Stille cross‐coupling polymerization. In this study, alkoxy and thienyl functionalized alternating BDT‐alt‐TQT copolymers are synthesized by direct arylation polymerization (DArP), using Ozawa conditions. An extensive optimization of the reaction conditions such as the catalytic system, solvent, temperature, base, and the concentration of the catalyst is accomplished. The optical and electrochemical properties of the copolymers obtained by DArP are compared to the reference polymers synthesized by Stille cross‐coupling polymerization. Finally, the optimized BDT‐alt‐TQT copolymers are incorporated into organic solar cells as electron donors. The solar cells of the DArP copolymers exhibit power conversion efficiencies up to 80% (rel.) of their Stille cross coupling analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1457–1467  相似文献   

12.
Recently synthesized BF2‐coordinated azo derivatives have been proposed as photoswitches that operate in the optical window (λ=600–1200 nm) for use in bioimaging applications. Herein, we have theoretically analyzed these compounds and modified some substituents to analyze which properties of the molecule govern its photochemistry. Our results compare rather well with the available experimental data, so our methodology, based on density functional theory (DFT) calculations for the ground electronic state and time‐dependent‐DFT for the first excited electronic state, is validated. Through systematic modification of different substituents of the parent system, we designed compounds that are predicted to operate fully within the optical window. We also analyzed several molecules for which the cis isomer is the more stable isomer, a quite unusual result for azobenzene derivatives that is a much coveted property for some applications of these photoactive molecules in pharmacology. Our results also provide insight into other properties relevant for photoswitches, such as the thermal stability of the less stable isomer and the magnitude of the gap between the wavelengths of the radiation that activates each isomerization process, which must be as large as possible to improve the yield of each photoisomerization. From a more general perspective, our results may provide a step towards the rational design of new photoswitches that fulfill a set of desired characteristics.  相似文献   

13.
The linear and non‐linear optical properties of a family of dumbbell‐shaped dinuclear complexes, in which an oligothiophene chain with various numbers of rings (1, 3, and 6) acts as a bridge between two homoleptic tris(2,2′‐bipyridine)ruthenium(II) complexes, have been fully investigated by using a range of spectroscopic techniques (absorption and luminescence, transient absorption, Raman, and non‐linear absorption), together with density functional theory calculations. Our results shed light on the impact of the synergistic collaboration between the electronic structures of the two chemical moieties on the optical properties of these materials. Experiments on the linear optical properties of these compounds indicated that the length of the oligothiophene bridge was critical for luminescent behavior. Indeed, no emission was detected for compounds with long oligothiophene bridges (compounds 3 and 4 , with 3 and 6 thiophene rings, respectively), owing to the presence of the 3π? π* state of the conjugated bridge below the 3MLCT‐emitting states of the end‐capping RuII complexes. In contrast, the compound with the shortest bridge ( 2 , one thiophene ring) shows excellent photophysical features. Non‐linear optical experiments showed that the investigated compounds were strong non‐linear absorbers in wide energy ranges. Indeed, their non‐linear absorption was augmented upon increasing the length of the oligothiophene bridge. In particular, the compound with the longest oligothiophene bridge not only showed strong two‐photon absorption (TPA) but also noteworthy three‐photon‐absorption behavior, with a cross‐section value of 4×10?78 cm6 s2 at 1450 nm. This characteristic was complemented by the strong excited‐state absorption (ESA) that was observed for compounds 3 and 4 . As a matter of fact, the overlap between the non‐linear absorption and ESA establishes compounds 3 and 4 as good candidates for optical‐power‐limiting applications.  相似文献   

14.
The discovery and molecular engineering of novel electroluminescent materials is still a challenge in optoelectronics. In this work, the development of new π‐conjugated oligomers incorporating a dihydrophosphete skeleton is reported. Variation of the substitution pattern of 1,2‐dihydrophosphete derivatives and chemical modification of their P atoms afford thermally stable derivatives, which are suitable emitters to construct organic light‐emitting diodes (OLEDs). The optical and electrochemical properties of these new P‐based oligomers have been investigated in detail and are supported by DFT calculations. The OLED devices exhibit good performance and current‐independent CIE coordinates.  相似文献   

15.
The spectral and optical properties of the solutions of the N,N′‐Dipentyl‐3,4,9,10‐perylenedicarboximide (PTCDI‐C5) small molecule for different molarities were investigated in detail. The significant spectral parameters such as molar/mass extinction coefficients, absorption coefficient, electric dipole line strength, and oscillator strength of the PTCDI‐C5 molecule were calculated. The absorption bands of PTCDI‐C5 show vibronic structures with seven peaks at 2.08, 2.35, 2.53, 2.70, 2.86, 3.32, and 3.86 eV, respectively. The electronic spectra of the PTCDI‐C5 can be characterized by two basic regions as visible and Soret band. Effects of the molarities on the significant many optical parameters were investigated in detail. The direct and indirect allowed optical band gaps of the PTCDI‐C5 decrease with increasing molarity. Then, surface morphology properties were investigated and calculated roughness parameters of the PTCDI‐C5 film. Finally, we discussed for optoelectronic applications of these parameters, and this study was compared with the similar and related studies in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A series of crossslinked organic and organic/inorganic polymers based on maleimide chemistry have been investigated for second‐order non‐linear optical (NLO) materials with excellent thermal stability and low optical loss. Two reactive chromophores (maleimide‐containing azobenzene dye and alkoxysilane‐containing azobenzene dye) were incorporated into a phosphorus‐containing maleimide polymer, respectively. The selection of the phosphorus‐containing maleimide polymer as the polymeric matrices provides enhanced solubility and thermal stability, and excellent optical quality. Moreover, a full interpenetrating network (IPN) was formed through simultaneous addition reaction of the phosphorus‐containing maleimide, and sol‐gel process of alkoxysilane dye (ASD). Atomic force microscopy (AFM) results indicate that the inorganic networks are distributed uniformly throughout the polymer matrices on a nano‐scale. The silica particle sizes are well under 100 nm. Using in situ contact poling, the r33 coefficients of 2.2–17.0 pm/V have been obtained for the optically clear phosphorus‐containing NLO materials. Excellent temporal stability (100°C) and low optical loss (0.99–1.71 dB/cm; 830 nm) were also obtained for these phosphorus‐containing materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Five novel oligothiophene derivatives end‐capped by different functional groups (R=ethoxyl ( EtOP3T ), methylsulfanyl ( MSP3T ), acetyl ( AcP3T ), methylsulfonyl ( MSO2P3T ) and biphenyl ( BP3T ) groups) were synthesized. They were characterized by Hnuclear magnetic resonanceH (P1PH NMR), Hmass spectrometryH (MS) and Fourier transform Infra‐red spectra (IR). The relationship between end‐capping functional groups and optoelectronic properties of them was investigated. It was found that the compound with sulfonyl group in the molecular structure ( MSO R 2 R P3T ) shows the highest oxidation stability (also supported by theoretical calculations) and best thermal stability among the five compounds. The results of scanning electron microscope (SEM) interpret that MSO R 2 R P3T displays excellent ability of self‐film forming. This reveals that it could be a potential candidate for thin film material. The liquid crystal property of MSO R 2 R P3T was characterized by polarized optical microscopy analysis (POM) and X‐ray diffraction (XRD). The results of this paper provide useful information for the design of tailored oligothiophene derivatives for devices.  相似文献   

18.
Two novel series of monodisperse multi‐triarylamine‐substituted oligothiophenes, G 2 ‐ OT ( n )‐ G 2 with thiophene unit (n) varying from 6 to 8, and 4,7‐bis(2′‐oligothienyl)‐2,1,3‐benzothiadiazoles G 2 ‐ OT ( n ) BTD ‐ G 2 (n = 2, 4, 6) have been synthesized by the Suzuki coupling reactions. With an elongation of alkyl‐substituted oligothiophene core or an incorporation of benzothiadiazole into the central core, the absorption and emission spectra of G 2 ‐ OT ( n )‐ G 2 and G 2 ‐ OT ( n ) BTD ‐ G 2 series red‐shift substantially with the optical gap reducing to 1.95 eV for G 2 ‐ OT ( 6 ) BTD ‐ G 2 . Alkyl‐substitution onto oligothiophene backbone not only improves the solubility of the highly extended dendrimers but also renders coplanarity of the dendritic oligothiophene backbone at the excited state, which results in the enhancement of fluorescence quantum efficiency. The bulk heterojunction solar cells using these newly synthesized dendritic oligothiophenes as a donor material and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) as an acceptor material were fabricated and investigated which showed an increase in device performance as compared with those of the lower homologues. On increasing the loading of PCBM from 1.5 to 3 times in the active layer, there was also an enhancement in device performance with power conversion efficiencies of as‐fabricated solar cells increasing from 0.18% to 0.32%. In addition, proper annealing procedure could significantly improve the device performance of the dendrimer‐based photovoltaic cell. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 137–148, 2009  相似文献   

19.
Two D‐π‐A‐type 2,2,2‐trifluoroacetophenone derivatives, namely, 4′‐(4‐( N,N‐diphenyl)amino‐phenyl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Ben) and 4′‐(4‐(7‐(N,N‐diphenylamino)‐9,9‐dimethyl‐9H‐fluoren‐2‐yl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Flu), are developed as high‐performance photoinitiators combined with an amine or an iodonium salt for both the free‐radical polymerization of acrylates and the cationic polymerization of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 450 nm). The photochemical mechanisms are investigated by UV‐Vis spectra, molecular‐orbital calculations, fluorescence, cyclic voltammetry, photolysis, and electron‐spin‐resonance spin‐trapping techniques. Compared with 2,2,2‐trifluoroacetophenone, both photoinitiators exhibit larger redshift of the absorption spectra and higher molar‐extinction coefficients. PI‐Ben and PI‐Flu themselves can produce free radicals to initiate the polymerization of acrylate without any added hydrogen donor. These novel D‐π‐A type trifluoroacetophenone‐based photoinitiating systems exhibit good efficiencies (acrylate conversion = 48%–66%; epoxide conversion = 85%–95%; LEDs at 365–450 nm exposure) even in low‐concentration initiators (0.5%, w/w) and very low curing light intensities (1–2 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1945–1954  相似文献   

20.
The first examples of air‐stable 20π‐electron 5,10,15,20‐tetraaryl‐5,15‐diaza‐5,15‐dihydroporphyrins, their 18π‐electron dications, and the 19π‐electron radical cation were prepared through metal‐templated annulation of nickel(II) bis(5‐arylamino‐3‐chloro‐8‐mesityldipyrrin) complexes followed by oxidation. The neutral 20π‐electron derivatives are antiaromatic and the cationic 18π‐electron derivatives are aromatic in terms of the magnetic criterion of aromaticity. The meso N atoms in these diazaporphyrinoids give rise to characteristic redox and optical properties for the compounds that are not typical of isoelectronic 5,10,15,20‐tetraarylporphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号