首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synthesis, Structure, and Properties of Some Selenidostannates. II. [(C2H5)3NH]2Sn3Se7 · 0,25 H2O and [(C3H7)2NH2]4Sn4Se10 · 4 H2O The new selenidostannate hydrates [(C2H5)3NH]2Sn3Se7 · 0.25 H2O ( I ) and [(C3H7)2NH2]4Sn4Se10 · 4 H2O ( II ) were synthesized from an aqueous suspension of triethylammonium (tripropylammonium), tin, selenium I and in addition sulfur II at 130 °C. I crystallizes at ambient temperature in the monoclinic space group P21/n (a = 2069,3(4) pm, b = 1396,6(3) pm, c = 2342,8(5) pm, β = 114,68(3)°, Z = 8) and is characterized by two different anions, chains from edge‐sharing [Se3Se7]2– units and nets from trigonal SnSe5 bipyramids. II crystallizes at ambient temperature in the tetragonal space group I41/amd (a = 2150,0(3) pm, c = 1174,4(2) pm, Z = 4) and contains adamantane like [Sn4Se10]4–‐cages. The UV‐VIS spectra of the selenidostannates demonstrate that the absorption edges red shift as the dimensionality of the compounds is increased.  相似文献   

2.
Synthesis and Crystal Structure of Hydrogen Selenates of Divalent Metals – M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) New hydrogen selenates M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) have been synthesized using MSeO4 (M = Mg, Mn, Zn, Cd) and 90% selenic acid as starting materials. The crystal structures have been determined by X-ray single crystal crystallography. The compounds M(HSeO4)2 (M = Mg, Zn) belong to the structure type of Mg(HSO4)2, whereas Mn(HSeO4)2 forms a new structure type. Both hydrogen selenate monohydrates are isotypic to Mg(HSO4)2 · H2O. In all compounds the metal atoms are octahedrally coordinated by oxygen atoms of different HSeO4-tetrahedra. In the HSeO4-tetrahedra the Se–OH-distances (mean value 1.70 Å) are about 0.1 Å longer than Se–O-distances (mean value 1.62 Å). In the structure of M(HSeO4)2 (M = Mg, Zn) there are zigzag chains of hydrogen bonded HSeO4-tetrahedra. The structure of Mn(HSeO4)2 is characterized by chains of HSeO4-tetrahedra in form of screws. Hydrogen bonds from and to water molecules connect double layers of MO6-octahedra and HSeO4-tetrahedra in the structures of M(HSeO4)2 · H2O.  相似文献   

3.
Hydrothermal syntheses of single crystals of rare earth iodates, by decomposition of the corresponding periodate, are presented. This appears to be a generic method for making rare earth iodate crystals in a short period of time. Single crystal X‐ray diffraction structures of the four title compounds are presented. Sc(IO3)3: Space group R3, Z = 6, lattice dimensions at 100 K; a = b = 9.738(1), c = 13.938(1) Å; R1 = 0.0383. Y(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 100 K: a = 7.3529(2), b = 10.5112(4), c = 7.0282(2) Å, α = 105.177(1)°, β = 109.814(1)°, γ = 95.179(1)°; R1 = 0.0421. La(IO3)3 · ? H2O: Space group Pn, Z = 2, lattice dimensions at 100 K: a = 7.219(2), b = 11.139(4), c = 10.708(3) Å, β = 91.86(1)°; R1 = 0.0733. Lu(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 120 K: a = 7.2652(9), b = 7.4458(2), c = 9.3030(3) Å, α = 79.504(1)°, β = 84.755(1)°, γ = 71.676(2)°; R1 = 0.0349.  相似文献   

4.
Single crystals of Pr(ClO3)3 · 2 H2O have been obtained from the reaction of Pr2(CO3)3 · x H2O and HClO3. The crystal structure (orthorhombic, P212121, Z = 4, a = 576.03(7), b = 1236.7(2), c = 1314.0(2) pm) contains Pr3+ ions coordinated by two H2O molecules and seven ClO3 groups. According to DTA/TG measurements, Pr(ClO3)3 · 2 H2O decomposes in a two step mechanism with Pr(ClO3)3 as an intermediate and PrOCl as the final product. The decomposition has also been investigated by means of temperature dependent X-ray powder diffraction.  相似文献   

5.
Synthesis and Crystal Structure of [Na3(H2O)6,5(EtOH)][PhSnS3] · 3 EtOH Ph4Sn4S6 reacts with Na2S · 5 H2O in aqueous acetone to form Na3[PhSnS3]. Recrystallization of the crude product from ethanol leads to colourless needles of [Na3(H2O)6,5(EtOH)][PhSnS3] · 3 EtOH 1 . The crystal structure of 1 was determined by X-ray diffraction. 1 consists of [PhSnS3]3– anions and sodium cations which are coordinated by water, ethanol and sulfur atoms of the [PhSnS3]3– anions. The [PhSnS3]3– anion contains a tin atom which is coordinated nearly tetrahedrally by a phenyl group and three sulfur atoms. The Sn–S bonds are 237,4(2)–238,4(2) pm.  相似文献   

6.
The largest isopolyoxotunstate ion known to date , W24O8424− (structure shown in the picture), isolated as the cesium salt, and a chainlike polyoxotungstate ion made up of planar W4O16 units, isolated as the sodium salt, hide behind the simple empirical formulas of the title compounds.  相似文献   

7.
The reaction of [(AMTTO)PdCl2] ( 1 ) (AMTTO = 4-Amino-6-methyl-1,2,4-triazine-3(2H)-thione-5-one) with triphenylphosphane and sodium thiocyanate led to the air-stable crystalline complexes [(AMTTO)Pd(PPh3)Cl]Cl · MeOH ( 2 ) and [(AMTTO)Pd(SCN)2] · MeCN ( 3 ) in excellent yields. 2 and 3 have been characterized by IR and 31P NMR spectroscopy, elemental analyses as well as X-ray diffraction studies. Crystal data for 2 at –83 °C: monoclinic, space group P21/n, with a = 974.4(1), b = 988.6(1), c = 2750.7(2) pm, β = 98.16(1)°, Z = 4, R1 = 0.0241 and for 3 at –80 °C: orthorhombic, space group P212121, with a = 972.0(3), b = 1168.1(4), c = 1316.6(1) pm, Z = 4, R1 = 0.0817.  相似文献   

8.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

9.
Infrared and Raman Spectroscopy of the Isostructural Iodate Hydrates M(IO3)2 · 4 H2O (M = Mg, Ni, Co)-Crystal Structure of Cobalt Iodate Tetrahydrate The iodate tetrahydrates Mg(IO3)2 · 4 H2O, β-Ni(IO3)2 · 4 H2O, Co(IO3)2 · 4 H2O and their deuterated specimens were studied by X-ray, infrared and Raman spectroscopic methods. The title compounds are isostructural crystallising in the monoclinic space group P21/c (Z = 2). The crystal structure of Co(IO3)2 · 4 H2O (a = 836.8(5), b = 656.2(3), c = 850.2(5) pm and β = 100.12(5)°) has been refined by single-crystal X-ray methods (Robs = 3.08%, 693 unique reflections I0 > 2σ(I)). Isolated Co(IO3)2(H2O)4 octahedra form layers parallel (100). Within these layers, the two crystallographically different hydrate water molecules form nearly linear hydrogen bonds to adjacent IO3 ions (νOD of matrix isolated HDO of Co(IO3)2 · 4 H2O (isotopically diluted samples) 2443 (H3), 2430 (H2), and 2379 cm–1 (H1 and H4), –180 °C). Intramolecular O–H and intermolecular H…O distances were derived from the novel νOD vs. rOH and the traditional νOD vs. rH…O correlation curves, respectively. The internal modes of the iodate ions of the title compounds are discussed with respect to their coupling with the librations of the hydrate H2O molecules, the distortion of the IO3 ions, and the influence of the lattice potential.  相似文献   

10.
The Oxochlorotantalates (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2, (PPh4)2[Ta2OCl10] · 2 CH3CN, and (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 was obtained from a reaction of tantalum pentachloride, K2S5 and 18-crwon-6 in dichlormethane. According to its crystal structure analysis it is tetragonal (space group I 4 2d) and contains [Ta4O6Cl12]4– ions that have an adamantane-like Ta4O6 skeleton. Each K+ ion is coordinated by the oxygen atoms of the crown ether molecule from one side and with three Cl atoms of one [Ta4O6Cl12]4– ion from the opposite side. (PPh4)2[Ta2OCl10] · 2 CH3CN was a product from PPh4Cl and TaCl5 in acetonitrile in the presence of Na2S4. Its crystals are monoclinic (space group P21/c) and contain centrosymmetric [Ta2OCl10]2– ions having a linear Ta–O–Ta grouping with short bonds (Ta–O 189 pm). TaCl5 and H2S formed a solid substance (TaSCl3) from which a small amount of (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2 was obtained by the reaction with PPh4Cl in CH2Cl2. The anions in the monoclinic crystals (space group P21/n) consist of two Ta2OCl9 units which are joined by chloro bridges; each Ta2OCl9 unit has a nearly linear Ta–O–Ta group with differing bond lengths (179 and 202 pm). The oxygen in the compounds probably was introduced by traces of water in the crown ether, acetonitrile or H2S, respectively.  相似文献   

11.
The neutral thorium complex Th(NCSe)4(OP(NMe2)3)4 and homoleptic octa(isoselenocyanato)uranate anion U(NCSe)84– in (Pr4N)4U(NCSe)8·2CFCl3 ( 1 ) were synthesised and structurally characterised. (Pr4N)4U(NCSe)8·2CFCl3 contains the UIV anion U(NCSe)84– and was characterised using IR spectroscopy and single‐crystal X‐ray diffraction. Th(NCSe)4(OP(N(CH3)2)3)4·0.5CH3CN·0.5H2O ( 2 ) was characterised using IR and Raman spectroscopy, as well as 31P{1H}, 15N{1H}, 14N{1H}, 13C{1H}, 1H and 77Se NMR spectroscopy and structurally characterised using single‐crystal X‐ray diffraction. The U(NCSe)84– anion and Th(NCSe)4(OP(N(CH3)2)3)4·0.5CH3CN·0.5H2O complex are the first structurally characterised actinide‐isoselenocyanates. The crystal structures shows an approximate square antiprismatic arrangement of the ligands around the actinide(IV) atoms.  相似文献   

12.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

13.
Synthesis and Crystal Structure of the Transition Metal Trimetaphosphimates Zn3[(PO2NH)3]2 · 14 H2O and Co3[(PO2NH)3]2 · 14 H2O The transition metal trimetaphosphimates Zn3[(PO2NH)3]2 · 14 H2O and Co3[(PO2NH)3]2 · 14 H2O were obtained by the reaction of an aqueous solution of Na3(PO2NH)3 · 4 H2O with the respective metal nitrate or halide (molar ratio 1 : 4). The structure of Zn3[(PO2NH)3]2 · 14 H2O was solved by single crystal X‐ray methods. The structure of isotypic Co3[(PO2NH)3]2 · 14 H2O was refined from X‐ray powder diffraction data using the Rietveld method (Zn3[(PO2NH)3]2 · 14 H2O ( 1 ): P 1, a = 743.7(2), b = 955.9(2), c = 980.1(2) pm, α = 102.70(3), β = 90.46(3), and γ = 100.12(3)°, Z = 1; Co3[(PO2NH)3]2 · 14 H2O ( 2 ): P 1, a = 746.05(1), b = 957.06(2), c = 988.51(2) pm, α = 102.162(1), β = 90.044(1), and γ = 99.258(1)°, Z = 1). In 1 and 2 the P3N3 rings of the trimetaphosphimate ions attain a conformation which can be described as a combination of an ideal boat and an ideal twist conformation. The trimetaphosphimate ions act as bridging ligands. Thus chains of alternating M2+ and (PO2NH)33– ions are formed which are interconnected by additional M2+ ions forming electro‐neutral double chains. In the solid these double chains are connected by hydrogen bonds.  相似文献   

14.
Three new alkali metal transition metal sulfate‐oxalates, RbFe(SO4)(C2O4)0.5 · H2O and CsM(SO4)(C2O4)0.5 · H2O (M = Mn, Fe) were prepared through hydrothermal reactions and characterized by single‐crystal X‐ray diffraction, solid state UV/Vis/NIR diffuse reflectance spectroscopy, infrared spectra, thermogravimetric analysis, and powder X‐ray diffraction. The title compounds all crystallize in the monoclinic space group P21/c (no. 14) with lattice parameters: a = 7.9193(5), b = 9.4907(6), c = 8.8090(6) Å, β = 95.180(2)°, Z = 4 for RbFe(SO4)(C2O4)0.5 · H2O; a = 8.0654(11), b = 9.6103(13), c = 9.2189(13) Å, β = 94.564(4)°, Z = 4 for CsMn(SO4)(C2O4)0.5 · H2O; and a = 7.9377(3), b = 9.5757(4), c = 9.1474(4) Å, β = 96.1040(10)°, Z = 4 for CsFe(SO4)(C2O4)0.5 · H2O. All compounds exhibit three‐dimensional frameworks composed of [MO6] octahedra, [SO4]2– tetrahedra, and [C2O4]2– anions. The alkali cations are located in one‐dimensional tunnels.  相似文献   

15.
CaI2(H2O)2 reacts with O‐donor ligands L to yield coordination compounds of the type {[Ca(H2O)2L4]I2}n/∞, ( 1 : L = CH3COOC2H5, n = 1; 2 : L = THF, n = 2). Both compounds feature a coordination number of six around the calcium atom with two water molecules in axial positions and four ligands L in equatorial positions of a tetragonal bipyramid. Due to only a slight variation in the arrangement of the cationic units [Ca(H2O)2L4]2+, hydrogen bonds can be built up between them and the iodide anions in different ways in order to lead to a one‐dimensional polymer for 1 and a two‐dimensional polymer for 2 . Density functional theory calculations provide useful informations on the involved orbitals on the μ2‐bridging iodide and on the structure of the systems, leading to a small H–I–H angle of 71.2° in 1 compared to a large H–I–H angle of 121.8° in 2 .  相似文献   

16.
Phosphoraneiminato Complexes of Rare Earths Elements. Syntheses and Crystal Structures of [M2(C5H5)3(NPPh3)3] · 3 C7H8 mit M = Y, Dy, and Er. Magnetic Properties of [Dy2(C5H5)3(NPPh3)3] · 3 C7H8 The title compounds have been prepared by reactions of the cyclopentadienidchlorides [M(C5H5)2Cl]2 with LiNPPh3 in boiling toluene, and they were characterized by crystal structure determinations. All three compounds crystallize isotypicly with one another within the orthorhombic space group Pbca with Z = 8. Two of the three phosphoraneiminato groups link the metal atoms via μ2-N atoms to almost planar M2N2 four-membered rings. The third NPPh3 group is terminally bonded. The magnetic susceptibility of [Dy2(C5H5)3(NPPh3)3] · 3 C7H8 has been determined (SQUID magnetometer) in the temperature range 1.7 K–300 K at magnetic fields between 0.01 T and 5 T. Calculations based on a cubic ligand field model lead to a satisfactory simulation with reasonable ligand field parameters. The inclusion of isotropic intramolecular exchange interactions in the model does not improve the fit, so that in the framework of the applied model no hints to a spin-spin coupling within the dinuclear units are obtained.  相似文献   

17.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

18.
Syntheses, Crystal Structures, and Thermal Behavior of Er2(SO4)3 · 8 H2O and Er2(SO4)3 · 4 H2O Evaporation of aqueous solutions of Er2(SO4)3 yields light pink single crystals of Er2(SO4)3 · 8 H2O. X-ray single crystal investigations show that the compound crystallizes monoclinically (C2/c, Z = 8, a = 1346.1(3), b = 667.21(1), c = 1816.2(6) pm, β = 101.90(3)°, Rall = 0.0169) with eightfold coordination of Er3+, according to Er(SO4)4(H2O)4. DSC- and temperature dependent X-ray powder investigations show that the decomposition of the hydrate follows a two step mechanism, firstly yielding Er2(SO4)3 · 3 H2O and finally Er2(SO4)3. Attempts to synthesize Er2(SO4)3 · 3 H2O led to another hydrate, Er2(SO4)3 · 4 H2O. There are two crystallographically different Er3+ ions in the triclinic structure (P 1, Z = 2, a = 663.5(2), b = 905.5(2), c = 1046.5(2) pm, α = 93.59(3)°, β = 107.18(2)°, γ = 99.12(3)°, Rall = 0.0248). Er(1)3+ is coordinated by five SO42– groups and three H2O molecules, Er(2)3+ is surrounded by six SO42– groups and one H2O molecule. The thermal decomposition of the tetrahydrate yields Er2(SO4)3 in a one step process. In both cases the dehydration produces the anhydrous sulfate in a modification different from the one known so far.  相似文献   

19.
Carbonate Hydrates of the Heavy Alkali Metals: Preparation and Structure of Rb2CO3 · 1.5 H2O und Cs2CO3 · 3 H2O Rb2CO3 · 1.5 H2O and Cs2CO3 · 3 H2O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four‐circle diffractometer data, the crystal structures were determined (Rb2CO3 · 1.5 H2O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, β = 120.133(8)°, VEZ = 1109.3(6) · 106 pm3; Cs2CO3 · 3 H2O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, β = 90.708(14)°, VEZ = 393.9(2) · 106 pm3). Rb2CO3 · 1.5 H2O is isostructural with K2CO3 · 1.5 H2O. In case of Cs2CO3 · 3 H2O no comparable structure is known. Both structures show [(CO32–)(H2O)]‐chains, being connected via additional H2O forming columns (Rb2CO3 · 1.5 H2O) and layers (Cs2CO3 · 3 H2O), respectively.  相似文献   

20.
The syntheses and structures of the two mixedvalence crystalline molybdenum blue compounds Na26[Mo142O432(H2O)58H14] · ca. 300 H2O ( 1 ) (containing the maximal number of well defined defects which influence the overall structure and the reactivity of the anionic cluster) and Na16[(MoO3)176(H2O)63(CH3OH)17H16] · ca. 600 H2O · ca. 6 CH3OH ( 2 ) (obtained in an optimized high-yield synthesis) are reported with reference to the critical conditions required for the isolation of corresponding crystalline materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号