共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes with Macrocyclic Ligands. V Dinuclear Copper(II) Complexes with Chiral Macrocyclic Ligands of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of four chiral, dinuclear, macrocyclic, cationic copper(II) complexes, [Cu2(Lm,n)]2+ ( 1 – 4 ), are described. The two symmetrical compounds [Cu2(L2,2)][ClO4]2 ( 1 and 2 ) were synthesized in a one‐step reaction from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐perchlorate and the chiral diamine (1S,2S)‐1,2‐diphenylethylenediamine (synthesis of 1 ) and (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 2 ), respectively. For the synthesis of the two unsymmetrical compounds [Cu2(LPh,n)][ClO4]2 ( 3 and 4 ) the mononuclear, neutral copper(II) complex [CuLPh] ( 5 ) [synthesized from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐acetate and 1,2‐phenylenediamine] was reacted with (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 3 ) and (S)‐1,1′‐binaphthyl‐2,2′‐diamine (synthesis of 4 ), respectively. The structures of the two unsymmetrical copper(II) compounds ( 3 and 4 ) were determined by X‐ray diffraction. 相似文献
2.
Rainer Mattes Christoph Mühlenbrock Katharina Leeners Claudia Pyttel 《无机化学与普通化学杂志》2004,630(5):722-729
Metal Complexes with N2O2S2 Donor Set. Synthesis and Characterization of the Cobalt(II), Nickel(II), and Copper(II) Complexes of a 15‐ and a 16‐Membered Bis(2‐hydroxyethyl) Pendant Macrocyclic Ligand The macrocyclic ligands 6, 10‐bis(2‐hydroxyethyl)‐7, 8, 9, 11, 17, 18‐hexahydro‐dibenzo‐[e, n][1, 4, 8, 12]‐dithiadiaza‐cyclopentadecine ( 1 ) (L1) and 5, 13‐bis(2‐hydroxyethyl)‐7, 8, 9, 10, 16, 17, 18, 19, 20‐nonahydro‐dibenzo‐[g, o][1, 9, 5, 13]‐dithiadiaza‐cyclohexadecine (L4) have been prepared. They form the stable complexes [CoL1(‐H)CoL1](ClO4)3 ( 2 ), [NiL1](ClO4)2·MeOH ( 3 ), Λ‐[CuL1](ClO4)2·MeOH ( 4a ) and rac‐[CuL1](ClO4)2·MeOH ( 4b ), [NiL4](ClO4)2 ( 5 ), and [CuL4](ClO4)2 ( 6 ). The compounds 1 to 6 have been characterized by standard methods and single‐crystal X‐ray diffraction. In the complexes 2 to 6 the metal atoms are octahedrally coordinated by the N2O2S2 donor set of the ligands. L1 and L4 are folded herein along the N···M···S‐ and the N···M···N′‐axes, respectively. This results at the metal atom in a all‐cis‐configuration for the complexes of L1 and a trans‐N2‐cis‐O2‐cis‐S2‐configuration for the complexes of L4. The cobalt(II) complex 2 is a dimer, bridged by a rather short hydrogen bridge of 2.402(12)Å length. The copper(II) complexes of L1 and L4 differ with respect to the Jahn‐Teller‐distortion. 相似文献
3.
Metal Complexes of Biologically Important Ligands. CXXVI. Palladium(II) and Platinum(II) Complexes with the Antimalarial Drug Mefloquine as Ligand The coordination sites of the antimalarial drug mefloquine (L) were studied. Reactions of the chloro bridged complexes (allyl)Pd(μ‐Cl)2Pd(allyl) and (R3P)(Cl)M(μ‐Cl)2M(Cl)(PR3) (M = Pd, Pt) with racemic mefloquine give the compounds (allyl)(Cl)Pd(L) ( 1 ), Cl2(Et3P)Pt(L) ( 2 ) and Cl2(Et3P)Pd(L) ( 3 ) with coordination of the piperidine N atom of mefloquine. In the presence of NaOMe the N,O‐chelate complexes Cl(Et3P)Pt(L–H+) ( 4 ) and Cl(R3P)Pd(L–H+) ( 5 , 6 , R = Et, nBu) were obtained. Protection of the piperidine N atom of mefloquine by protonation allows the synthesis of the complexes Cl2(Et3P)Pt(L + H+) ( 7 ) in which mefloquine is coordinated via the quinoline N atom. The structures of 2 , 3 and 4 were determined by X‐ray diffraction analysis. In the crystal of 4 pairs of enantiomers are found which are linked by two hydrogen bridges between the amine group and the chloro ligand. 相似文献
4.
Maryam Shafaei‐Fallah Weifeng Shi Dieter Fenske Alexander Rothenberger 《无机化学与普通化学杂志》2006,632(6):1091-1096
Syntheses and Structures of Transition Metal Complexes with Dithiophosphinato and Trithiophosphinato Ligands The reactions of MnCl2 with Ph2P(S)(SSiMe3) produced [Mn(S2PPh2)2(thf)2] ( 1 ) and [Mn(S2PPh2)2(dme)] ( 2 ) (DME = 1,2‐Dimethoxyethane). The compounds [Co6(S3PPh)2(μ4‐S)2(μ3‐S)2(PPh3)4] ( 3 ), [Co2(S3PPh)2(PPh3)2] ( 4 ), [Ni(S2PPh)(PPhEt2)2] ( 5 ), [Ni(S3PPh)(PPhEt2)2] ( 6 ) and [Cu4(S3PPh)2(dppp)2] ( 8 ) [dppp = 1,3‐Bis(diphenylphosphanyl)propane] were obtained from reactions of first‐row transition metal halides with PhP(S)(SSiMe3)2 in the presence of tertiary phosphines. In a reaction of PhP(S)(SSiMe3)2 with PhPEt2 PhPEt2PS2Ph ( 7 ) was isolated. All compounds were characterized by X‐ray crystallography. 相似文献
5.
Ramona Wortmann Alexander Hoffmann Roxana Haase Ulrich Flörke Sonja Herres‐Pawlis Dr. 《无机化学与普通化学杂志》2009,635(1):64-69
Syntheses and Structures of Cobalt(II) and Copper(I) Complexes with Guanidine‐Pyridine Hybridligands The guanidine‐pyridine hybridligands N‐(1,3‐dimethylimidazolidin‐2‐ylidene)‐2‐(pyridine‐2‐yl)ethanamine (DMEGepy, L1 ) and 1,1,3,3‐tetramethyl‐2‐(2‐(pyridine‐2‐yl)ethyl)guanidine (TMGepy, L2 ) have been synthesized and characterized. The reaction of DMEGepy with CoCl2 and TMGepy with CuI lead to the mononuclear complexes {N‐(1,3‐dimethylimidazolidin‐2‐ylidene)‐2‐(pyridine‐2‐yl)ethanamine}cobalt(II) dichloride ( 1 ) and {1,1,3,3‐tetramethyl‐2‐(2‐(pyridine‐2‐yl)ethyl)guanidine}copper(I) iodide ( 2 ). By the characterization of these complexes we are able to compare the complexation chemistry of the hybridguanidine and bisguanidine ligands with regard to the various N donor functions systematically. 相似文献
6.
Jesús Martínez Rufina Bastida Alejandro Macías Laura Valencia Manuel Vicente 《无机化学与普通化学杂志》2005,631(11):2046-2053
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions. 相似文献
7.
Complexes of Nickel(II) with Oxalic Amidines and Oxalic Amidinates with Additonal R2P‐Donor Groups Oxalamidines R1N=C(NHR2)‐C(=NHR2)=NR1, which bear additional donor atoms at two of the four N substituents ( H2A : R1 = mesityl, R2 = ‐(CH2)3‐PPh2; H2B : R1 = tolyl, R2 = ‐(CH2)3‐PMe2) form binuclear complexes with Nickel(II) in which very different coordination modes are realized. In the complex [ (A) Ni2Br2] (1) the two nickel atoms at each side of the bridge are in a square‐planar environment, coordinated by the two N donor atoms of the oxalic amidinate framework, a bromide and a Ph2P group. An analogous coordination has the organometallic compound [ (A) Ni2Me2] (2) . In contrast, the two nickel atoms in the compound {[( B )][Ni(acac)]2} (5) differ in their coordinative environment. At one side of the oxalic amidinate bridging ligand a (acac)Ni fragment is coordinated by the two N donor atoms resulting in a square‐planar environment. At the opposite side the (acac)Ni fragment is coordinated at the both N donor ligands of the bridging ligand as well as at the two PMe2 groups of the side chains resulting in an octahedral coordination for this nickel atom. 相似文献
8.
Polyol Metal Complexes. 491) μ‐Dulcitolato‐O2, 3;4, 5 Complexes with CuII(en) and NiII(tren) Metal Fragments The dinuclear ethylenediamine‐copper(II) complex of the tetra‐anion of the achiral alditol dulcitol (galactitol) is remarkable, since it was the first crystalline carbohydrate—metal complex ever reported (W. Traube, G. Glaubitt, V. Schenck, Ber. Dtsch. Chem. Ges. 1930 , 63, 2083—2093). Although its existence is recognized for many decades, its structure remained unknown due to a kind of crystal packing that promotes twinning. Crystal growth at low temperatures now yielded crystalline specimens of [(en)2Cu2(Dulc2, 3, 4, 5H—4)] · 7 H2O ( 1 ) that have allowed us to unravel both the crystal structure and the twinning law. Closely related molecular structures are adopted by [(tren)2Ni2(Dulc2, 3, 4, 5H—4)] · 20 H2O ( 2 ) and [(Me3tren)2Ni2(Dulc2, 3, 4, 5H—4)] · 16 H2O ( 3 ), the latter showing the shortest hydrogen bond towards a polyolate acceptor ever found (O···O distance: 2.422Å). 相似文献
9.
Metal Complexes with Biological Important Ligands. CXLVII [1] Structure and Properties of Pfeiffer's Nickel(II) Schiff Base Complex from Salicylaldehyde and Glycine Ester. The structure of the planar nickel(II) complex reported by Paul Pfeiffer with two Schiff base ligands from salicylaldehyde and glycine ethylester and with trans‐NiO2N2 arrangement was determined by X‐ray diffraction. The finding by Pfeiffer that this complex reacts with oxygen to give the bis(O, N‐imine) complex Ni(OC6H4CH=NH)2 under C‐N cleavage could be confirmed by spectroscopic data, and a reaction path is suggested. 相似文献
10.
Monomeric and Polymeric Dimethylaminothiosquarato Complexes: The Crystal Structures of Nickel(II), Cobalt(II), Silver(I), Platinum(II), Gold(I), Mercury(II) and Lead(II) Dimethylaminothiosquarates The ligand 2‐dimethylamino‐3, 4‐dioxo‐cyclobut‐1‐en‐thiolate, Me2N‐C4O2S− (L) forms neutral and anionic complexes with nickel(II), cobalt(II)‐, silver(I)‐, platinum(II)‐, gold(I)‐, mercury(II)‐ and lead(II). According to the crystal structures of seven complexes the ligand is O, S‐chelating in [Ni(L)2(H2O)2]·2 H2O, [Co(L)2(CH3OH)2] and (with limitations) in [Pb(L)2·DMF]. In the remaining compounds the ligand behaves essentially as a thiolate ligand. The platinum, gold and mercury complexes [TMA]2[Pt(L)4], [TMA] [Au(L)2] and [Hg(L)2] are monomeric. In [TMA][Ag2(L)3]·5.5 H2O a chain‐like structure was found. In the asymmetric unit of this structure eight silver ions, with mutual distances in the range 2.8949(4) to 3.1660(3)Å, are coordinated by twelve thiosquarato ligands. [Pb(L)2·DMF] has also a polymeric structure. It contains a core of edge‐bridged, irregular PbS4 polyhedra. TMA[Au(H2NC4O2S)2] has also been prepared and its structure elucidated. 相似文献
11.
12.
Wei Han Ling Li Zhan‐Quan Liu Shi‐Ping Yan Dai‐Zheng Liao Zong‐Hui Jiang Pan‐Wen Shen 《无机化学与普通化学杂志》2004,630(4):591-596
Three new complexes [CuL(N3)2] ( 1 ), [CuL(SCN)2] ( 2 ), and [NiL(SCN)2] ( 3 ) (L = 1, 4, 7‐triisopropyl‐1, 4, 7‐triazacyclononane, [—NR—C2H4—NR—C2H4—NR—C2H4—], R = i‐Pr) have been synthesized and structurally characterized. The three complexes all crystallize in the monoclinic space group P21/n, with the unit cell parameters a = 9.100(5), b = 19.492(11), c = 11.646(6)Å, β = 94.526(9)° for 1 , a = 10.148(3), b = 13.611(5), c = 15.777(6)Å, β = 95.412(6)° for 2 and a = 9.270(7), b = 16.629(14), c = 14.886(12)Å, β = 101.217(15)° for 3 . The central copper(II) and nickel(II) ions are coordinated to five nitrogen atoms, three of which from the L and two from N3— or SCN—, forming a slightly distorted square pyramidal geometry. Moreover, elemental analysis, IR, UV‐vis and ESR spectra of complexes 1 ‐ 3 were also determined. 相似文献
13.
The coordination chemistry of the water soluble phosphane oxide ligand tris[2‐isopropylimidazol‐4(5)‐yl]phosphane oxide, 4‐TIPOiPr, has been explored. A variety of 3d‐metal halide complexes have been prepared and the crystal structures of the solvates [(4‐TIPOiPr)ZnCl2]·MeOH·1/2dioxane ( 1 ·MeOH·1/2dioxane), [(4‐TIPOiPr)CoCl2]·H2O·2dioxane ( 2 ·H2O·2dioxane) and [(4‐TIPOiPr)2Ni(MeOH)2]Cl2·2MeOH ( 3 ·2MeOH) have been determined. All three structures show unprecedented coordination modes of the 4‐TIPOiPr ligand. Both zinc and cobalt complexes are coordinated in a bidentate κ2N fashion, whereas the nickel atom is coordinated by two ligands in a κN,O mode using one imidazolyl substituent and the P=O oxygen atom. 相似文献
14.
Wiktor I. Owtscharenko Erhard Schnell Karl-E. Schwarzhans 《Monatshefte für Chemie / Chemical Monthly》1987,118(6-7):773-777
A series of complexes formed between the copper(II) metal ion and the semicarbazone of the stable free radical 2-acetyl-2,5,5-trimethyl-4-phenyl-3-imidazoline-3-oxid-1-oxyl and the analogous hydroxylamine has been prepared. By analysis of the IR spectra of the complexes the coordination mode of the ligands was determined. 相似文献
15.
Jens Langer Reinald Fischer Helmar Görls Nils Theyssen Dirk Walther Prof. Dr. 《无机化学与普通化学杂志》2007,633(4):557-562
Nickel(I) Complexes with 1,1′‐Bis(phosphino)ferrocenes as Ligands The thermically stable monomeric Nickel(I) complexes [(dtbpf)Ni(acac)] ( 1 ) and [(dippf)NiCl] ( 2 ) were synthesized and characterized by elemental analyses, EPR spectroscopy, and by X‐ray crystal structure analyses of single crystals (dtbpf: 1,1′‐bis(di‐tertbutylphosphino)ferrocene; dippf: 1,1′‐bis(diisopropylphosphino)ferrocene). 1 is formed by reduction of Ni(acac)2 with triethylaluminium in the presence of dtbpf, together with the nickel(0) complex [(dtbpf)Ni(C2H4)]. 1 contains a NiI atom surrounded of two O‐ and two P donor atoms in a distorted tetrahedral coordination. 2 was obtained by reduction of [(dippf)NiCl2] with NaBH4. In 2 the nickel(I) atom adopts trigonal planar coordination. 相似文献
16.
Rainer Richter Uwe Schrder Lothar Beyer Jorge Angulo‐Cornejo Maria Lino‐Pacheco 《无机化学与普通化学杂志》2001,627(8):1877-1881
Mononuclear Copper(II) Complexes of Dioxaalkylene and Alkylene Bridged Bis‐isoureas By reaction of N‐benzoylthiocarbamic‐O,S‐diethylester with primary diamines (oxa)alkylene bridged isoureas 1 have been prepared. They yield with CuII neutral chelates 2 with tetradentate ligand coordination. The structures of the ligand 1 a and of the related CuII complex 2 a have been determined by X‐ray crystal structure analysis. They show an enamine tautomer in the ligand and a slightly tetrahedrally distorted coordination with an (oxa)alkylene bridge between the trans arranged N ligator atoms in the complex. 相似文献
17.
Binuclear Nickel(II) Complexes with Oxalamidinates as Bridging Ligands: Synthesis and Struktures of Compounds with Planar, Tetrahedral, Tetragonal‐pyramidal, and Octahedral Coordination Oxalamidines R1–NH–C(=NR2–C(=NR2)–NH–R1 react selectively with Ni(acac)2 under formation of the planar complexes [(acac)Ni(oxalamidinate)Ni(acac)]. Two crystal structures of the binuclear complexes with R = R′ = Ph ( 1 ) or p‐tolyl ( 2 ) show that the bridging oxalamidinates bind as bidendate ligands at each Nickel(II) atom. In contrast, the more sterically demanding fragment (Ph3P)NiBr can only coordinate at sterically less demanding oxalamidinates to form complexes of the type [(Ph3P)NiBr]2(oxalamidinate) with tetrahedral coordination of NiII found by X‐ray analyses. Oxalamidines containing additional donor atoms in the side arms react very different, but in each case under formation of binuclear complexes, such as [(acac)2Ni]2( H2E ) ( 8 ) (with R1: –(CH2)3PPh2, R2: p‐tolyl) in which the oxalamidine acts as bidentate neutral P,N‐ligand and the NiII atom has an octahedral environment. H2F (with R1: –(CH2)3PPh2, R2: Mesityl), however, yields the planar complex [(acac)Ni]2( F ) ( 9 ) with dianionic oxalamidinate under elimination of acetylacetone. There is no coordination of the donor groups of the side arms in the solid state of complex 9 , in contrast to the analogous binuclear complex [(acac)Ni]2( H ) 10 (R1: –CH2–CH2‐2‐pyridyl, R2: Mesityl). In this complex a distorted tetragonal‐pyramidal coordination of NiII is achieved. 2 reacts with an excess of LiCH3 under elimination of the oxalamidinate to form the cluster compound Li4(THF)4Ni2Me8 in very good yields, while 9 yields the THF poorer cluster Li2(THF)2Li2Ni2Me8 under similar conditions. 相似文献
18.
Karen A. Ketcham Isabel Garcia Elena Bermejo John K. Swearingen Alfonso Castieiras Douglas X. West 《无机化学与普通化学杂志》2002,628(2):409-415
Reduction of 2‐cyanopyridine by sodium in the presence of 3‐hexamethyleneiminylthiosemicarbazide produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim. Complexes with nickel(II), copper(II) and palladium(II) have been prepared and the following complexes structurally characterized: [Ni(Amhexim)OAc], [{Cu(Amhexim)}2C4H4O4]·2DMSO·H2O, [Cu(HAmhexim)Cl2] and [Pd(Amhexim)Cl]. Coordination is via the pyridyl nitrogen, imine nitrogen and thiolato or thione sulfur atom when coordinating as the anionic or neutral ligand, respectively. [{Cu(Amhexim)}2C4H4O4] is a binuclear complex with the two copper(II) ions bridged by the succinato group in [Cu‐(HAmhexim)Cl2] the Cu atom is 5‐coordinate and close to a square pyramid structure and in [Ni(Amhexim)OAc] and [Pd(Amhexim)Cl] the metal atoms are planar, 4‐coordinate. 相似文献
19.
Adriana González Castro José Sánchez Costa Roberta Pievo Chiara Massera Ilpo Mutikainen Urho Turpeinen Patrick Gamez Jan Reedijk Prof. Dr. 《无机化学与普通化学杂志》2008,634(14):2477-2482
A new Schiff‐base ligand having a potentially coordinating thioether group (2‐quinoline‐N‐(2′‐methylthiophenyl)methyleneimine, qmtpm ) has been prepared. The synthesis, structure, UV‐Vis and EPR studies of one copper(II) and two cobalt(II) complexes from this ligand is reported. The X‐ray structures of the CuII and CoII chlorido complexes 1 and 2 reveal the metal atoms in highly distorted square‐pyramidal environments constituted of one tridentate ligand and two anions. On the other hand, the thiocyanato CoII compound 3 exhibits a distorted trigonal‐bipyramidal structure. These structural variations are apparently due to the different counter‐ions which leads to distinct lattice interactions. The spectroscopic data obtained by EPR and UV‐Vis investigations are in agreement with the solid‐state structures of the coordination compounds. 相似文献
20.
Adam Neuba Dr. Sonja Herres‐Pawlis Oliver Seewald Janna Börner Andreas J. Heuwing Ulrich Flörke Prof. Dr. Gerald Henkel 《无机化学与普通化学杂志》2010,636(15):2641-2649
The transition metal complexes with the ligand 1,3‐bis(N,N,N′,N′‐tetramethylguanidino)propane (btmgp), [Mn(btmgp)Br2] ( 1 ), [Co(btmgp)Cl2] ( 2 ), [Ni(btmgp)I2] ( 3 ), [Zn(btmgp)Cl2] ( 4 ), [Zn(btmgp)(O2CCH3)2] ( 5 ), [Cd(btmgp)Cl2] ( 6 ), [Hg(btmgp)Cl2] ( 7 ) and [Ag2(btmgp)2][ClO4]2·2MeCN ( 8 ), were prepared and characterised for the first time. The stoichiometric reaction of the corresponding water‐free metal salts with the ligand btmgp in dry MeCN or THF resulted in the straightforward formation of the mononuclear complexes 1 – 7 and the binuclear complex 8 . In complexes with MII the metal ion shows a distorted tetrahedral coordination whereas in 8 , the coordination of the MI ion is almost linear. The coordination behavior of btmgp and resulting structural parameters of the corresponding complexes were discussed in an comparative approach together with already described complexes of btmgp and the bisguanidine ligand N1,N2‐bis(1,3‐dimethylimidazolidin‐2‐ylidene)‐ethane‐1,2‐diamine (DMEG2e), respectively. 相似文献