共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolfgang Beck Wolf Peter Fehlhammer Klaus Feldl Thomas M. Klaptke Gernot Kramer Peter Mayer Holger Piotrowski Peter Pllmann Walter Ponikwar Thomas Schütt Erich Schuierer Martin Vogt 《无机化学与普通化学杂志》2001,627(8):1751-1758
The crystal structures of the monomeric palladium(II) azide complexes of the type L2Pd(N3)2 (L = PPh3 ( 1 ), AsPh3 ( 2 ), and 2‐chloropyridine ( 3 )), the dimeric [(AsPh4)2][Pd2(N3)4Cl2] ( 4 ), the homoleptic azido palladate [(PNP)2][Pd(N3)4] ( 5 ) and the homoleptic azido platinates [(AsPh4)2][Pt(N3)4] · 2 H2O ( 6 ) and [(AsPh4)2][Pt(N3)6] ( 7 ) were determined by X‐ray diffraction at single crystals. 1 and 2 are isotypic and crystallize in the triclinic space group P1. 1 , 2 and 3 show terminal azide ligands in trans position. In 4 the [Pd2(N3)4Cl2]2– anions show end‐on bridging azide groups as well as terminal chlorine atoms and azide ligands. The anions in 5 and 6 show azide ligands in equal positions with almost local C4h symmetry at the platinum and palladium atom respectively. The metal atoms show a planar surrounding. The [Pt(N3)6]2– anions in 7 are centrosymmetric (idealized S6 symmetry) with an octahedral surrounding of six nitrogen atoms at the platinum centers. 相似文献
2.
Synthesis and Structures of the Multinuclear Rhenium Nitrido Complexes [Re2N2Cl4(PMe2Ph)4(MeCN)] and [Re4N3Cl9(PMe2Ph)6] The binuclear rhenium complex [Re2N2Cl4(PMe2Ph)4(MeCN)] ( 1 ) is obtained as a byproduct of the synthesis of [(Me2PhP)3(MeCN)ClReNZrCl5] from [ReNCl2(PMe2Ph)3] and [ZrCl4(MeCN)2] in toluene. It crystallizes as 1 · 2 toluene in the monoclinic space group P21/n with a = 1517.0(3); b = 1847.7(2); c = 1952.4(6) pm; β = 106.44(1)° and Z = 4. The two Re atoms are connected by an asymmetric nitrido bridge Re≡N–Re with distances Re–N of 169.9(5) and 208.7(5) pm. In course of the reaction of [ReNCl2(PMe2Ph)3] with [ZrCl4(THF)2] in CH2Cl2 hydrochloric acid is formed by acting of the Lewis acid on the solvent. HCl protonates and eliminates phosphine ligands of the educt [ReNCl2(PMe2Ph)3] to form the phosphonium salt [PMe2PhH]2[ZrCl6] ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 1536.9(3); b = 1148.8(1); c = 1402.2(3) pm, β = 100.70(2)° and Z = 4. The remaining fragments of the rhenium complex combine to yield the tetranuclear mixed valent complex [Re4N3Cl9(PMe2Ph)6] ( 3 ), crystallizing as 3 · CH2Cl2 in the triclinic space group P 1 with a = 1312.9(19); b = 1661.4(2); 1897.1(2) pm; α = 78.62(1)°; β = 86.77(1)°; γ = 68.28(1)° and Z = 2. The four Re atoms occupy the corners of a tetrahedron. Its edges are formed by three nitrido and three chloro bridges. The asymmetric nitrido bridges Re≡N–Re are characterized by short distances in the range of 172(2) to 176(3) pm and long distances of 194(3) to 204(2) pm. The angles Re–N–Re are between 154(1) and 160(1)°. 相似文献
3.
Azido Derivatives of the Pentamethylcyclopentadienyl Vanadium(IV)-Fragment. Molecular Structures of the Binuclear Complexes [Cp*VCl(N3)(μ-N3)]2 and [Cp*V(N3)2(μ-N3)]2 The stepwise reaction of Cp*VCl3 with excess trimethylsilyl azide (Me3Si–N3) in solution leads to the paramagnetic, azido-bridged complexes [Cp*VCl2(μ-N3)]2 ( 3 ), [Cp*VCl(N3)(μ-N3)]2 ( 4 ) and [Cp*V(N3)2(μ-N3)]2 ( 5 ) which were characterized by their IR and mass spectra. The azide-rich binuclear complex 5 is also formed if a pentane solution of Cp*V(CO)4 is stirred in the presence of excess Me3Si–N3 in an open vessel. According to the X-ray structure analyses both 4 and 5 are centrosymmetric molecules with a planar V(N)2V four-membered ring. In the absence of free trimethylsilyl azide, solutions of 3 – 5 lose dinitrogen slowly; in the presence of traces of air, 5 is thereby converted to the diamagnetic, oxo-bridged complex [Cp*V(O)(N3)]2(μ-O) ( 6 ). 相似文献
4.
Thorsten Grb Bernhard Neumüller Klaus Harms Fritjof Schmock Andreas Greiner Kurt Dehnicke 《无机化学与普通化学杂志》2001,627(8):1928-1931
Crystal Structures of trans ‐[NiBr2(pyridine)4] and [Ni(HNPEt3)4]I2 Turquoise single crystals of trans‐[NiBr2(pyridine)4] have been obtained by the reaction of excess pyridine with nickel(II) bromide/diacetonealcohol. According to the crystal structure determination the nickel atom is octahedrally coordinated by the two bromine atoms in trans‐position and by the nitrogen atoms of the pyridine molecules. Space group Pna21, Z = 4, lattice dimensions at 20 °C: a = 1592.9(2), b = 943.8(1), c = 1413.0(2) pm, R1 = 0.0492. Dark blue single crystals of the phosphoraneimine complex [Ni(HNPEt3)4]I2 have been obtained from NiI2/H2O with excess Me3SiNPEt3 and subsequent recrystallization from acetonitrile. According to the crystal structure determination the nickel atom is tetrahedrally coordinated by the nitrogen atoms of the HNPEt3 molecules. The iodide ions are connected via N–H…I contacts with the cation to form an ion triple. Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1934.9(2), b = 1078.3(1), c = 1966.3(2) pm, β = 111.040(8)°; R1 = 0.043. 相似文献
5.
Reactions of Cp*NbCl4 and Cp*TaCl4 with Trimethylsilyl‐azide, Me3Si‐N3. Molecular Structures of the Bis(azido)‐Oxo‐Bridged Complexes [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) and [Cp*TaCl2(μ‐N3)]2(μ‐O) (Cp* = Pentamethylcyclopentadienyl) The chloro ligands in Cp*TaCl4 (1c) can be stepwise substituted for azido ligands by reactions with trimethylsilyl azide, Me3Si‐N3 (A) , to generate the complete series of the bis(azido)‐bridged dimers [Cp*TaCl3‐n(N3)n(μ‐N3)]2 ( n = 0 (2c) , n = 1 (3c) , n = 2 (4c) and n = 3 (5c) ). If the solvent CH2Cl2 contains traces of water, an additional oxo bridge is incorporated to give [Cp*‐TaCl2(μ‐N3)]2(μ‐O) (6c) or [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) (7c) , respectively. Both 6c and 7c are also formed in stoichiometric reactions from [Cp*TaCl2(μ‐OH)]2(μ‐O) (8c) and A . Analogous reactions of Cp*NbCl4 (1b) with A were used to prepare the azide‐rich dinuclear products [Cp*NbCl3‐n(N3)n(μ‐N3)]2 (n = 2 (4b) , and n = 3 (5b) ), and [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) (7b) . The mononuclear complex Cp*Ta(N3)Me3 (10c) is obtained from Cp*Ta(Cl)Me3 and A . All azido complexes were characterised by their IR as well as their 1H and 13C NMR spectra; X‐ray crystal structure analyses are available for 6c and 7b . 相似文献
6.
The SCN– Ion as an Ambidentate Ligand – Synthesis and Crystal Structures of (Bu4N)4[Ag2Fe2(SCN)12] and (Et4N)2 [Ag2Fe(SCN)6] In (Bu4N)4[Ag2Fe2(SCN)12] · 2 CH3NO2 ( 1 ) and (Et4N)2[Ag2Fe(SCN)6] ( 2 ) the ambidentate SCN– anions link Ag+ with Fe3+ and Fe2+ centers, respectively. The tetranuclear anions in 1 are built from [Fe(NCS)6]3– groups connected by Ag+ ions. In 2 the same bridging pattern leads to polymeric anionic chains containing [Fe(NCS)6]4– groups linked by Ag+ ions. (Bu4N)4[Ag2Fe2(SCN)12] · 2 CH3NO2 ( 1 ): a = 1184.10(10), b = 1370.80(10), c = 1776.5(2) pm, α = 99.090(10), β = 102.100(10), γ = 100.360(10)°, V = 2715.5(4) · 106 pm3, space group P1; (Et4N)2[Ag2Fe(SCN)6] ( 2 ): a = 1607.0(2), b = 1006.92(9), c = 1096.13(9) pm, V = 1773.7(3) · 106 pm3, space group Pnnm. 相似文献
7.
New Phosphoraneiminato Complexes of Molybdenum and Tungsten. Crystal Structures of [(μ‐S2N2){MoCl4(NPPh3)}2], [Mo(NPPh3)4][BF4]2, [W(S)2(NPPh3)2], and [Ph3PNH2]+[SCN]– The binuclear molybdenum(V)phosphoraneiminato complex [(μ‐S2N2){MoVCl4(NPPh3)}2] ( 1 ) has been prepared by the reaction of the chlorothionitreno complex [MoVICl4(NSCl)]2 with Me3SiNPPh3 in dichloromethane forming green crystals. The temperature dependent magnetic susceptibility in the range of 2–30 K shows ideal behaviour according to the Curie law with a magnetic moment of 1.60 B.M. According to the crystal structure determination 1 forms centrosymmetric molecules in which the molybdenum atoms are connected by the nitrogen atoms of the S2N2 molecule. In trans‐position to it the nitrogen atoms of the phosphoraneiminato groups (NPPh3–) are coordinated with Mo–N bond lengths of 171(1) pm. The tetrakis(phosphoraneiminato) complex [Mo(NPPh3)4]‐ [BF4]2 ( 2 ) has been obtained as colourless crystal needles by the reaction of MoN(NPPh3)3 with boron trifluoride etherate in toluene solution. In the dication the molybdenum atom is tetrahedrally coordinated by the nitrogen atoms of the (NPPh3–) groups with Mo–N bond lengths of 179,8–181,0(3) pm. The dithio‐bis(phosphoraneiminato) tungsten complex [W(S)2(NPPh3)2] ( 3 ) is formed as yellow crystals as well as [Ph3PNH2]+[SCN]– ( 4 ) from the reaction of WN(NPPh3)3 with carbon disulfide in tetrahydrofurane in the presence of traces of water. 3 has a monomeric molecular structure with tetrahedrally coordinated tungsten atom with bond lengths W–S of 214.5(5) pm and W–N of 179(1) pm. In the structure of 4 the thiocyanate ions are associated by hydrogen bonds of the NH2 group of the [Ph3PNH2]+ ion to give a zigzag chain. 1 : Space group Pbca, Z = 4, lattice constants at –80 °C: a = 1647.9(3), b = 1460.8(2), c = 1810.4(4) pm; R1 = 0.0981. 2 : Space group P1, Z = 2, lattice constants at –80 °C: a = 1162.5(1), b = 1238.0(1), c = 2346.2(2) pm; α = 103.14(1)°, β = 90.13(1)°, γ = 97.66(1)°; R1 = 0.0423. 3 : Space group Fdd2, Z = 8, lattice constants at –80 °C: a = 3310.1(4), b = 2059.7(2), c = 966,7(1) pm; R1 = 0.0696. 4 : Space group P212121, Z = 4, lattice constants at –80 °C: a = 1118.4(1), b = 1206.7(1), c = 1279.9(1) pm; R1 = 0.0311. 相似文献
8.
New Azido Complexes of Tantalum(V). Synthesis and Molecular Structure of the Dinuclear Compounds [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) and [Cp*Ta(N3)3(μ‐N3)]2 (Cp* = Pentamethylcyclopentadienyl) The reaction of Cp*TaCl4 ( 1 ) with an excess of trimethylsilyl azide (Me3Si–N3) leads to azide‐rich dinuclear complexes which contain both terminal and bridging azido ligands. The oxo complex [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) ( 4 ) was formed in dichloromethane in the presence of traces of water, whereas [Cp*Ta(N3)3(μ‐N3)]2 ( 5 ) was obtained from boiling toluene after several days. According to the X‐ray structure determinations the Ta…Ta distance in 4 (314,5 pm) is considerably shorter than in 5 (382,2 pm). 相似文献
9.
Thorsten Grb Christoph Müller W. Massa Thomas Miekisch Gert Seybert Klaus Harms Kurt Dehnicke 《无机化学与普通化学杂志》2001,627(9):2191-2197
Crystal Structures of the Phosphaneimine Complexes [NaI(HNPPh3)3] and [SrI2(HNPPh3)2(THF)2], as well as of Sodium Triphenylphosphoraneiminate [NaNPPh3]6 [NaI(HNPPh3)3] ( 1 ) has been obtained as yellow, moisture sensitive crystals as an intermediate product of the synthesis of sodium triphenylphosphoraneiminate, [NaNPPh3]6 ( 2 ) from Ph3PI2 and sodium amide in liquid ammonia. Correspondingly, colourless crystals of [SrI2(HNPPh3)2(THF)2] ( 3 ) are formed from strontium amide and Ph3PI2 in liquid ammonia and subsequent recrystallisation of the primary product [SrI2(HNPPh3)4] from thf solution. The complexes 1 – 3 are mainly characterized by crystal structure determinations. 1 · 0,5 thf: space group P3c1, Z = 4, lattice dimensions at 193 K: a = b = 1533.2(1); c = 2545.6(1) pm, R = 0.0417. 1 has a molecular structure in which the sodium atom is tetrahedrally coordinated by the iodine atom with a distance of 315.9 pm and by the nitrogen atoms of the three HNPPh3 molecules with a distance of 238.9 pm. 2 · C7H8: space group P1, Z = 1, lattice dimensions at 213 K: a = 1457.1(1), b = 1484.9(1), c = 1502.7(1) pm; α = 116.32(1)°, β = 115.358(10)°, γ = 93.585(14)°; R = 0.0520. 2 has a molecular structure in which the six sodium atoms and the six nitrogen atoms of the (NPPh3–) groups form a hexagonal prism with approximate D3d symmetry. 3 · 2 thf: space group P1, Z = 2, lattice dimensions at 193 K: a = 1042.9(1), b = 1337.4(1), c = 2095.1(1) pm; α = 90.130(8)°, β = 96.310(8)°, γ = 111.985(8)°; R = 0.0310. 3 has a molecular structure in which the strontium atom is octahedrally coordinated by the iodine atoms, by the nitrogen atoms of the HNPPh3 molecules and by the oxygen atoms of the thf molecules, all ligands being in trans‐position to one another. 相似文献
10.
Synthesis and Crystal Structure of the Nitrido Complexes [(n‐Bu)4N]2[{(L)Cl4Re≡N}2PtCl2] (L = THF und H2O) and [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2—PtCl2] ( 1a ) is obtained by the reaction of [(n‐Bu)4N][ReNCl4] with [PtCl2(C6H5CN)2] in THF/CH2Cl2. It forms red crystals with the composition 1a · 2 CH2Cl2 crystallizing in the tetragonal space group I41/a with a = 3186.7(2); c = 1311.2(1) pm and Z = 8. If the reaction of the educts is carried out without THF, however under exposure to air the compound [(n‐Bu)4N]2[{(H2O)Cl4Re≡N}2PtCl2] ( 1b ) is obtained as red trigonal crystals with the space group R3 and a = 3628.3(3), c = 1231.4(1) pm and Z = 9. In the centrosymmetric complex anions [{(L)Cl4Re≡N}2PtCl2]2— a linear PtCl2moiety is connected in a trans arrangement with two complex fragments [(L)Cl4Re≡N]— via asymmetric nitrido bridges Re≡dqN‐Pt. For PtII such results a square‐planar coordination PtCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 169.5 pm and Pt‐N = 188.8 pm ( 1a ), respectively, Re‐N = 165.6 pm and Pt‐N = 194.1 pm ( 1b ). By the reaction of [(n‐Bu)4N][ReNCl4] with PtCl4 in CH2Cl2 platinum is reduced forming the heterometallic ReVI/PtII complex, [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 2012.9(1); b = 1109.0(2); c = 2687.4(4) pm; β = 111.65(1)° and Z = 4. In the central unit ClPt(μ‐Cl)2PtCl of the anionic complex [(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]22— with the symmetry C2 the coordination of the Pt atoms is completed by two nitrido bridges Re≡N‐Pt to nitrido complex fragments [(H2O)Cl4Re≡N] — forming a square‐planar arrangement for the Pt atoms. The distances in the linear nitrido bridges are Re‐N = 165.9 pm and Pt‐N = 190.1 pm. 相似文献
11.
Synthesis and Structure of the Nitrido Complexes (PPh4)2[(O3Os≡N)2 MCl2] (M = Pd und Pt) and [{(Me2PhP)3Cl2Re≡N}2PdCl2] The threenuclear complexes (PPh4)2[(O3Os≡N)2MCl2] (M = Pd ( 1a ) and Pt ( 1b )) are obtained by the reaction of (PPh4) [OsO3N] with [MCl2(NCC6H5)2] (M = Pd and Pt) in form of orange red ( 1a ) or red brown ( 1b ) crystals. The compounds crystallize isotypically in the monoclinic space group P21/n with a = 1052.35(6), b = 1376.70(6), c = 1607.3(1) pm, β = 94.669(7)°, and Z = 2 for 1a and a = 1053.27(7), b = 1371.6(1), c = 1615.9(1) pm, β = 94.557(7)°, and Z = 2 for 1b . In the centrosymmetric complex anions [(O3O≡N)2MCl2]2— a linear MCl2 moiety is connected in trans arrangement with two complexes [O3Os≡N]— via asymmetric nitrido bridges Os≡N‐M. For the M2+ cations such results a square‐planar coordination MCl2N2. The virtually linear nitrido bridges are characterized by distances Os‐N = 167.5 pm ( 1a ) and 164.2 pm ( 1b ) as well as Pd‐N = 196.2 pm and Pt‐N = 197.8 pm. The reaction of ReNCl2(PMe2Ph)3 with PdCl2(NCC6H5)2 in CH2Cl2 yields red crystals of the heterometallic complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] ( 2 ). It crystallizes as 2 · 2 CH2Cl2 in the monoclinic space group C2/c with a = 2138.3(5); b = 1260.9(3); c = 2375.6(2) pm; β = 96.09(1)° and Z = 4. In the threenuclear complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] with the symmetry Ci the coordination of the Pd2+ cation of the central PdCl2 unit is completed by two nitrido bridges Re≡N‐Pd to complexes (Me2PhP)3Cl2Re≡N forming a square‐planar arrangement. The distances in the linear nitrido bridges are Re‐N = 170.2 pm and Pd‐N = 197.1 pm. 相似文献
12.
C. Lau A. Dietrich M. Plate P. Dierkes B. Neumüller S. Wocadlo W. Massa K. Harms K. Dehnicke 《无机化学与普通化学杂志》2003,629(3):473-478
Crystal Structures of the Hexachlorometalates NH4[SbCl6], NH4[WCl6], [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 and (PPh4)2[WCl6]·4CH3CN The crystal structures of the title compounds were determined by single crystal X‐ray methods. NH4[SbCl6] and NH4[WCl6] crystallize isotypically in the space group C2/c with four formula units per unit cell. The NH4+ ions occupy a twofold crystallographic axis, whereas the metal atoms of the [MCl6]— ions occupy a centre of inversion. There exist weak interionic hydrogen bridges. [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 crystallizes in the orthorhombic space group R3¯/m with Z = 3. The compound forms centrosymmetric ion triples, in which the potassium ions are coordinated with a WCl3 face each. In trans‐position to it the chlorine atom of a CH2Cl2 molecule is coordinated so that, together with the oxygen atoms of the crown ether, coordination number 10 is achieved. (PPh4)2[WCl6]·4CH3CN crystallizes in the monoclinic space group P21/c with Z = 4. This compound, too, forms centrosymmetric ion triples, in which in addition the acetonitrile molecules are connected with the [WCl6]2— ion via weak C—H···Cl contacts. 相似文献
13.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm. 相似文献
14.
Iodoplumbates with Polymeric Anions – Synthesis and Crystal Structures of [Na3(OCMe2)12][Pb4I11(OCMe2)], (Ph4P)2[Pb5I12], and (Ph4P)4[Pb15I34(dmf)6] Reactions of PbI2 with NaI in polar organic solvents followed by crystallization with large cations yield iodoplumbate complexes with various compositions and structures. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 , (Ph4P)2[Pb5I12] 4 and (Ph4P)4[Pb15I34(dmf)6] 7 contain one-dimensional infinite anionic chains of face- or edge-sharing PbI6 or PbI5L (L = acetone, DMF) octahedra. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 : Space group P1 (No. 1), a = 1120.3(5), b = 1265.3(6), c = 1608.3(8) pm, α = 74.64(4), β = 70.40(4), γ = 85.24(4)°, V = 2071(2) · 106 pm3; (Ph4P)2[Pb5I12] 4 : Space group C2/c (No. 15), a = 787.00(10), b = 2812.0(5), c = 3115.9(5) pm, β = 96.240(13)°, V = 6885(2) · 106 pm3; (Ph4P)4[Pb15I34(dmf)6] 7 : Space group P21/n (No. 14), a = 2278.8(4), b = 1782.6(3), c = 2616.8(4) pm, β = 114.432(13)°, V = 9678(3) · 106 pm3. 相似文献
15.
Weak Sn…I Interactions in the Crystal Structures of the Iodostannates [SnI4]2– and [SnI3]– Iodostannate complexes can be crystallized from SnI2 solutions in polar organic solvents by precipitation with large counterions. Thereby isolated anions as well as one, two or three‐dimensional polymeric anionic substructures are established, in which SnI3– and SnI42– groups are linked by weak Sn…I interactions. Examples are the iodostannates [Me3N–(CH2)2–NMe3][SnI4] ( 1 ), (Ph4P)2[Sn2I6] ( 2 ), [Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ), [Fe(dmf)6][SnI3]2 ( 4 ) and (Pr4N)[SnI3] ( 5 ), which have been characterized by single crystal X‐ray diffraction. [Me3N–(CH2)2–NMe3][SnI4] ( 1 ): a = 671.6(2), b = 1373.3(4), c = 2046.6(9) pm, V = 1887.7(11) · 106 pm3, space group Pbcm;(Ph4P)2[Sn2I6] ( 2 ): a = 1168.05(6), b = 717.06(4), c = 3093.40(10) pm, β = 101.202(4)°, V = 2541.6(2) · 106 pm3, space group P21/n;[Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ): a = 695.58(4), b = 1748.30(8), c = 987.12(5) pm, β = 92.789(6)°, V = 1199.00(11) · 106 pm3, space group P21/c;[Fe(dmf)6][SnI3]2 ( 4 ): a = 884.99(8), b = 1019.04(8), c = 1218.20(8) pm, α = 92.715(7), β = 105.826(7), γ = 98.241(7), V = 1041.7(1) · 106 pm3, space group P1;(Pr4N)[SnI3] ( 5 ): a = 912.6(2), b = 1205.1(2), c = 1885.4(3) pm, V = 2073.5(7) · 106 pm3, space group P212121. 相似文献
16.
Thorsten Grb Gertraud Geiseler Klaus Harms Andreas Greiner Kurt Dehnicke 《无机化学与普通化学杂志》2002,628(1):217-221
Phosphoraneiminato Complexes of Zirconium: Crystal Structures of [ZrCl3(NPPh3)(HNPPh3)2] and [ZrCl2(NPPh3)2(HNPPh3)2] The phosphoraneiminato complexes [ZrCl3(NPPh3)(HNPPh3)2] ( 1 ) and [ZrCl2(NPPh3)2(HNPPh3)2] ( 2 ) have been obtained by reaction of [ZrCl4(THF)2] with [CsNPPh3]4 in THF solution to give colourless moisture sensitive crystals which are characterized by X‐ray structure determinations. [ZrCl3(NPPh3)(HNPPh3)2] ( 1 ): Space group P 1, Z = 2, lattice dimensions at 193 K: a = 1209.4(2); b = 1480.8(2); c = 1814.2(2) pm; α = 71.203(13)°, β = 71.216(13)°, γ = 74.401(13)°; R = 0.0476. The zirconium atom of 1 is oktahedrally coordinated by the three chlorine atoms in meridional arrangement and by the three nitrogen atoms of the (NPPh3–) ligand and of the two phosphane imine molecules HNPPh3. The ZrN bond distance of the (NPPh3–) group (193.5 pm) corresponds with a double bond. [ZrCl2(NPPh3)2(HNPPh3)2] ( 2 ): Space group P 1, Z = 4, lattice dimensions at 193 K: a = 1447.6(2); b = 1925.7(2), c = 2457.0(2) pm; α = 67.317(12)°, β = 87.376(12)°, γ = 87.103(13)°; R = 0.0408. The zirconium atom in 2 is octahedrally coordinated by the two chlorine atoms in trans position, and by the nitrogen atoms of the two (NPPh3–) groups as well as by the two HNPPh3 molecules. The ZrN distance of the (NPPh3–) ligands (198.9 and 202.0 pm) suggest some π‐interaction between the zirconium and the nitrogen atoms. 相似文献
17.
Alkali Metal Phosphoraneiminates. New Syntheses and Crystal Structures of [RbNPPh3]6 and [CsNPPh3]4 The alkali‐metal phosphoraneiminates MNPPh3 with M = Na, K, Rb, Cs have been synthesized by reactions of Ph3PI2 with the alkali‐metal amides in liquid ammonia and were obtained as pure samples by subsequent extraction with toluene. The ethyl derivative KNPEt3 has been prepared by an analogous route from Et3PBr2 and extraction with hexane. Single crystals of the phosphoraneiminates of rubidium and cesium are obtainable by crystallization from toluene and toluene/hexane, respectively. They were suitable for crystal structure determinations. [RbNPPh3]6 · 41/2 toluene ( 1 ): space group P1, Z = 2, lattice dimensions at 193 K: a = 1525.5(2); b = 1902.9(2); c = 2178.3(2) pm; α = 95.435(12)°; β = 91.145(12)°; γ = 90.448(12)°; R1 = 0.0529. The compound forms a Rb6N6 skeleton of a double cube with a common face of two rubidium and two nitrogen atoms, the latter being fivefold coordinated by four rubidium atoms and the phosphorus atom. [CsNPPh3]4 · 2 toluene · 33/4 hexane ( 2 a ): space group Fd3, Z = 8, lattice dimensions at 123 K: a = b = c = 2679.7(1) pm; R1 = 0.0405. [CsNPPh3]4 · 2 toluene ( 2 b ): space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1418.9(1); b = 2258.9(1); c = 2497.6(1) pm; β = 91.055(6)°; R1 = 0.0278. Both cesium compounds form Cs4N4 heterocubane structures which are different by means of the packing and by different bond angles at the cesium and nitrogen atoms. 相似文献
18.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11]– into [SbF6]– and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy. 相似文献
19.
Edwin Gauch Adelheid Hagenbach Joachim Strhle Armin Dietrich Bernhard Neumüller Kurt Dehnicke 《无机化学与普通化学杂志》2000,626(2):489-493
Syntheses and Crystal Structures of the Nitrido Complexes [MoNCl3(MeCN)]4 and [MoNCl2(bipy)]4 [MoNCl3(MeCN)]4 ( 1 ) is obtained by the reaction of MoCl4(MeCN)2 with Me3SiN3 in CH2Cl2 as a sparingly soluble and water sensitive red compound. It crystallizes as 1 · 3 CH2Cl2 in the triclinic space group P 1 with a = 889.7(1), b = 1004.8(1), c = 1270.4(2) pm; α = 71.69(1)°; β = 73.63(1)°; γ = 86.32(1)°, and Z = 1. It forms centrosymmetric tetranuclear complexes, in which the Mo atoms are connected by asymmetric and linear nitrido bridges with distances Mo–N of 167.5 and 214.3 pm. The acetonitrile molecules are coordinated with a long bond length Mo–N of 241 pm in trans position to the Mo–N triple bond. The reaction of 1 with 2,2′‐bipyridine in CH2Cl2/THF yields the tetranuclear molybdenum(V) complex [MoNCl2(bipy)]4 ( 2 ) as main product. It crystallizes in the tetragonal space group P42/n with a = 1637.5(2), c = 1018.3(2) pm, and Z = 2. In the tetranuclear complexes with the symmetry S4 linear and asymmetric nitrido bridges connect the Mo atoms to form an almost planar eight membered Mo–N ring with distances Mo–N of 173 and 203 pm. The bipyridine molecules coordinate as chelates in cis and trans position to the Mo–N triple bond. In this case the trans influence causes different Mo–N distances of 219 and 232 pm. 相似文献
20.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ). 相似文献