首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water‐vapor permeability of poly(octadecyl acrylate) (PA‐18) was measured as a function of temperature in the region traversing its melting point (50 °C). The molten‐state permeability of PA‐18 is comparable to that of shorter side‐chain methacrylate polymers. Water permeability in the semicrystalline state of PA‐18 is similar to that of polyethylene at comparable crystallinity levels. The permeation switch, or change in permeability with the traversing of the melting point, for water is discussed in the context of previous results for other penetrants in this and other side‐chain crystalline polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 979–984, 2001  相似文献   

2.
We report some unusual phase behaviour, of general implication for condensed matter, on the polymer poly‐4‐methyl pentene‐1 (P4MP1) induced by changes in pressure (P) and temperature (T), as observed by in‐situ X‐ray diffraction and high pressure DSC. Upon increasing pressure beyond a threshold value, the polymer, crystalline at ambient conditions, looses its crystalline order isothermally. The process is reversible. This behaviour is observed in two widely separated temperature regions, one below the glass transition temperature (< 50°C) and one close to the melting temperature (250°C), thus showing solid state amorphization and inversion in the melting temperature with increasing pressure. This further suggests inverse melting, i.e. re‐entrant of the two widely separated liquid and amorphous phases along the T‐axis at fixed P. This is confirmed experimentally as disordering in the crystalline structure on cooling. The inverse melting in P4MP1 raises the possibility of exothermic melting and endothermic crystallization as anticipated by Tammann (1903), see reference 1. The anticipated exothermic melting and endothermic crystallization is confirmed experimentally in the one component system P4MP1. We are observing similar features in a range of polymers.  相似文献   

3.
4.
A new technology for the production of transparent material, using a “crystalline” polymer, is proposed in this study. In addition, a heat‐resistant transparent flexible plastic film with a high hydrophobic surface and a thermal decomposition temperature near 400 °C was created. Partially fluorinated crystalline polymer with switchboard‐type lamellae results high transparency as a consequence of the formation of a high‐density amorphous structure based on high‐temperature drawing just below the melting point at 250 °C. Melt‐compounding with montmorillonite modified by the long‐chain quaternary phosphonium with high coverage induces formation of a nanohybrid that retains transparency and also results in an increase in the thermal degradation temperature by over 50 °C. Through this technology, which results in heat‐resistance, transparency, and flexibility, the nano‐micro‐millimeter structures of solid‐state polymers are hierarchically controlled, which enables the creation of new materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1674–1690  相似文献   

5.
Summary: In a low‐molecular‐weight polyethylene‐block‐poly(ethylene oxide) (PE‐b‐PEO) diblock copolymer, two pathway‐dependent melting processes were observed: Upon slow heating, the PE lamellar crystals melted at ≈97 °C into a disordered state. However, when the temperature rapidly jumped to above the melting point (e.g., 100 °C), the PE lamellar crystals transformed directly into an ordered lamellar melt, followed by an isothermal conversion into a disordered melt. This isothermal order‐to‐disorder transition was explained by superheating of the PE crystals using a GT diagram.

A schematic GT diagram explaining the pathway‐dependent double melting for a crystalline polyethylene‐block‐poly(ethylene oxide) copolymer.  相似文献   


6.
A new multi‐variable‐measurement approach for characterizing and correlating the nanoscale and microscale morphology of crystal‐amorphous polymer blends with melt‐phase behavior is described. A vertical small‐angle light scattering (SALS) instrument optimized for examining the scattering and light transmitted from structures ranging from 0.5 to 50 μm, thereby spanning the size range characteristic of the initial‐to‐late stages of thermal‐phase transitions (e.g., melt‐phase separation and crystallization) in crystal‐amorphous polymer blends, was constructed. The SALS instrument was interfaced with differential scanning calorimetry (DSC), and simultaneous SALS/DSC/transmission measurements were performed. We show that the measurement of transmitted light and SALS under HV (cross‐polarized) optical alignments during melting can be used to reliably measure the thermodynamic (e.g., crystal melting and melt‐phase separation temperatures) and structural variables (e.g., crystalline fraction within the superstructures and volume fraction of superstructures) necessary for describing the multiphase behavior of crystal‐amorphous blends in one combined measurement. We also evaluate the orientation correlations of crystalline volume elements within the superstructures. Our results indicate that simultaneous measurement of transmitted light can provide a reliable estimate of the total scattering from density and orientation fluctuations and the melt‐phase separation temperature of polymer blends. For solution‐cast poly(?‐caprolactone)/poly(D,L‐lactic acid) blends, our multivariable measurements during melting provide the parameters necessary to generate a crystal–liquid and liquid–liquid phase diagram and characterize the solid‐state morphology. This opens up the challenge to explore use of our vertical SALS instrument as a rapid and convenient method for developing structure–property relationships for crystal‐amorphous polymer blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2714–2727, 2002  相似文献   

7.
The microphase structure of a series of polystyrene‐b‐polyethylene oxide‐b‐polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid‐state NMR, DSC, wide and small angle X‐ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene‐oxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and 1H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 55–64, 2010  相似文献   

8.
This study examined the oxygen‐transport properties of poly(ethylene terephthalate‐co‐bibenzoate) (PETBB55) crystallized from the melt (melt crystallization) or quenched to glass and subsequently isothermally crystallized by heating above the glass‐transition temperature (cold crystallization). The gauche–trans conformation of the glycol linkage was determined by infrared analysis, and the crystalline morphology was examined by atomic force microscopy. Oxygen solubility decreased linearly with volume fraction crystallinity. For melt‐crystallized PETBB55, extrapolation to zero solubility corresponded to an impermeable crystal with 100% trans glycol conformations, a density of 1.396 g cm?3, and a heat of melting of 83 J g?1. From the melt, PETBB55 crystallized as space‐filling spherulites with loosely organized lamellae and pronounced secondary crystallization. The morphological observations provided a structural model for permeability consisting of impermeable platelets randomly dispersed in a permeable matrix. In contrast, cold‐crystallized PETBB55 retained the granular texture of the quenched polymer despite the high level of crystallinity, as measured by the density and heat of melting. Oxygen solubility decreased linearly with volume fraction crystallinity, but zero solubility corresponded to an impermeable defective crystal with a trans fraction of 0.83 and a density of 1.381 g cm?3. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2489–2503, 2002  相似文献   

9.
The crystalline structure of polyamide‐12 (PA12) was studied by solid‐state 13C nuclear magnetic resonance (NMR) as well as by synchrotron wide‐ and small‐angle X‐ray scattering (WAXS and SAXS). Isotropic and oriented PA12 showed different NMR spectra ascribed to γ‐ and γ′‐crystalline modifications, respectively. On the basis of the position of the first diffraction peak, the isotropic γ‐form and the oriented γ′‐form were shown to be with hexagonal crystalline lattice at room temperature. When heated, the two PA12 polymorphs demonstrated different behaviors. Above 140 °C, the isotropic γ‐PA12 partially transformed into α‐modification. No such transition was observed with the oriented γ′‐PA12 phase even after annealing at temperatures close to melting. A γ′–γ transition was observed here only after isotropization by melting point. Various structural parameters were extracted from the WAXS and SAXS patterns and analyzed as a function of temperature and orientation: the degree of crystallinity, the d‐spacings, the Bragg's long spacings, the average thicknesses of the crystalline (lc) and amorphous (la) phases, and the linear crystallinity xcl within the lamellar stacks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3720–3733, 2005  相似文献   

10.
Oriented poly(vinylidene fluoride) (PVDF) films with β‐form crystals have been commonly prepared by cold drawing of a melt‐quenched film consisting of α‐form crystals. In this study, we have successfully produced highly oriented PVDF thin films (20 µm thick) with β‐crystals and a high crystallinity (55–76%), by solid‐state coextrusion of a gel film to eight times the original length at an established optimum extrusion temperature of 160°C, some 10°C below the melting temperature. The resultant drawn films had a highly oriented (orientation function fc = 0.993) fibrous structure, showing high mechanical properties of an extensional elastic modulus of 8.3 GPa and tensile strength of 0.84 GPa, along the draw direction. Such highly oriented and crystalline films exhibited excellent ferroelectric and piezoelectric properties. The square hysteresis loop was significantly sharper than that of a conventional sample. The sharp switching transient yielded the remnant polarization Pr of 90 mC/m2, and the electromechanical coupling factor kt was 0.24 at room temperature. These values are about 1.5 times greater than those of a conventional β‐PVDF film. Thus, solid‐state coextrusion near the melting point was found to be a useful technique for the preparation of highly oriented and highly crystalline β‐PVDF films with superior mechanical and electrical properties. The morphology of the extrudate relevant to such properties is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2549–2556, 1999  相似文献   

11.
The influence of ZnO nanoparticles on the crystalline structures of nylon‐6 under different crystallization conditions (annealing at different temperatures from the amorphous solid, isothermal crystallization from the melt at different temperatures, and crystallization from the solution) has been examined with differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared. ZnO nanoparticles can induce the γ‐crystalline form in nylon‐6 when it is cooled from the melted state and annealed from the amorphous solid. This effect of ZnO nanoparticles increases with decreasing particle size and changes under different crystallization conditions. The effects of ZnO nanoparticles on the crystallization kinetics of nylon‐6 have also been studied with DSC. The results show that ZnO nanoparticles have two competing effects on the crystallization of nylon‐6: inducing the nucleation but retarding the mobility of polymer chains. Finally, the melting behavior of the composites has been investigated with DSC, and the multiple melting peaks of composites containing ZnO nanoparticles and pure nylon‐6 are ascribed to the reorganization of imperfect crystals. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1033–1050, 2003  相似文献   

12.
Particle‐dispersed melting is a complex but important melting mechanism in the corotating twin‐screw extruder. In this study, the complex multi‐particle‐dispersed system was simplified into a single‐particle melting model. The finite‐difference method was introduced to solve this problem. The simulation results show that the melting of a particle may involve two steps: the heating stage and melting stage. The heating time and melting time depend on solid concentration, initial melt and solid temperature, and shear rate. Calculations indicate that high solid concentration and solid temperature, low melt temperature and shear rate will result in a more uniform temperature distribution after polymer melting. The model offers valuable information for designing the melting zone in a corotating twin‐screw extruder, especially at high screw speed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2461–2468, 2001  相似文献   

13.
A simultaneous wide‐angle and small‐angle X‐ray scattering study of two poly(ethylene naphthalene 2,6‐dicarboxylate) samples crystallized from the glassy state at different annealing temperatures for different annealing times was carried out with synchrotron radiation. Either single or dual melting was induced in the samples, as confirmed by differential scanning calorimetry (DSC). The correlation function and interface distribution function were calculated to evaluate microstructural parameters such as the long spacing, the thickness of the amorphous and crystalline phases, and the width of the size distributions. The sample with dual melting behavior exhibited an abrupt increase of all microstructural parameters at temperatures above the melting of the lowest endotherm, whereas the sample revealing a single melting endotherm did not show such a sudden change. This finding agrees with the concept that the appearance of two melting peaks in DSC traces can be explained by the dual lamellar stacking model. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 881–894, 2001  相似文献   

14.
4′‐Methylazobenzene‐2‐sulfenyl thio‐cyanate (MABS‐SCN) was synthesized in an aqueous medium and characterized by 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, and elemental analysis. The crystal structure was confirmed by single crystal X‐ray diffraction and its geometry was optimized in ground state by Hartree–Fock model and (B3LYP) density functional theory, and in solution (ethanol) using polarized continuum model at restricted HF using the basis set 6–31+G*. The compound crystallizes in orthorhombic space group Pbca, with unit cell parameters a = 7.165 (7) Å, b = 18.846 (2) Å, c = 20.379 (2) Å, V = 2752.1 (5) Å3, and Z = 8. It attains a planar thiadiazolium salt structure due to strong ortho azo–sulfur interaction imparting exceptional thermal stability, nonreactive solubility in aqueous medium, and high melting crystalline solid nature. A weak intramolecular C H…S type interaction, one C H…S type, four C H…N type intermolecular hydrogen bonds, and van der Waal's interactions are believed to be the stabilizing force for the crystal structure. MABS‐SCN was also tested for antimicrobial activity.  相似文献   

15.
Carbon‐13 spin–lattice relaxation times are measured for poly(octadecyl acrylate) above and below the melting point of the crystalline side chains. The chain backbone has long spin–lattice relaxation times below the melting point that shorten by more than an order of magnitude as the melting point range is traversed. Below the melting point, the backbone is nearly immobilized with spin–lattice relaxation changing very slowly with temperature. Above the melting point, the shorter spin–lattice relaxation times are typical of a rubber above the glass transition and decrease with increasing temperature. The methylene groups in the side chain are quite mobile well below the melting point, indicating fairly rapid anisotropic motion within the crystal. The methyl group at the end of the chain and the adjacent methylene group have longer spin–lattice relaxation times, indicating the greatest side‐chain mobility at the end, which is in the middle of the crystal structure. The side‐chain carbon adjacent to the carbonyl group is as mobile as the majority of the side‐chain carbon, indicating side‐chain mobility extends to all of the side‐chain CH2 groups. The abrupt transition in the mobility of the backbone is not typical of the amorphous phase in a semicrystalline polymer where the backbone units can crystallize. The close proximity of every backbone segment to the crystalline domain locks backbone segmental motion below the melting point. Melting and crystallization of the side chains switch segmental motion of the backbone on and off. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1548–1552, 2001  相似文献   

16.
The (E) isomer in mixtures of (E) and (Z) 1,3‐hexadiene was polymerized with the system CoCl2(PiPrPh2)2‐MAO, a highly active and stereospecific catalyst for the preparation of 1,2 syndiotactic polybutadiene. A new crystalline polymer with a melting point of 109 °C was obtained. The polymer was characterized by IR, NMR (13C, 1H in solution and 13C in the solid‐state), X‐ray diffraction, DSC, GPC and it was found to have a trans‐1,2 syndiotactic structure with a 5.18 ± 0.04 Å fiber periodicity. Since only the (E) isomer was polymerized, at the end of the reaction we were able to separate the (Z) isomer, which was ultimately polymerized with CpTiCl3‐MAO at low temperature, obtaining a low molecular weight, stereoregular polymer that, characterized by IR and NMR methods, was found to exhibit a cis‐1,2 syndiotactic structure, never reported before. Molecular mechanics calculations were carried out on the trans‐1,2 syndiotactic polymer and structural models consistent with the X‐ray diffraction data are proposed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5339–5353, 2007  相似文献   

17.
Ammonolysis of 1,2‐bis[dichloro(methyl)silyl]ethane afforded a crystalline tricyclic silazane along with polymeric material. The crystalline material could be isolated in pure state. It was analyzed by 1H, 13C, 15N and 29Si NMR spectroscopy in solution, by 13C, 15N and 29Si MAS NMR spectroscopy in the solid state, as well as by single‐crystal and powder X‐ray diffraction. The title compound exists as a single isomer in solution, whereas in the solid state the presence of several modifications is indicated, in particular by the solid‐state MAS NMR spectra.  相似文献   

18.
AC impedance spectroscopy was used to investigate the ionic conductivity of solution cast poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends doped with lithium perchlorate. At low PEO contents (below overlap weight fraction w*), ionic conductivities are almost low. This could be due to nearly distant PEO chains in blend, which means ion transportation cannot be performed adequately. However, at weight fractions well above w*, a significant increase in ionic conductivity was observed. This enhanced ionic conductivity mimics the PEO segmental relaxation in rigid PMMA matrix, which can be attributed to the accelerated motions of confined PEO chains in PMMA matrix. At PEO content higher than 20 wt % the conductivity measured at room temperature drops due to crystallization of PEO. However by increasing temperature to temperatures well above the melting point of PEO, a sudden increase of conductivity was observed which was attributed to phase transition from crystalline to amorphous state. The results indicate that some PEO/PMMA blends with well enough PEO content, which are structurally solid, can be considered as an interesting candidate for usage as solid‐state electrolytes in Lithium batteries. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2065–2071, 2010  相似文献   

19.
Copolyamides based on polyamide‐6,6 (PA‐6,6) were prepared by solid‐state modification (SSM). Para‐ and meta‐xylylenediamine were successfully incorporated into the aliphatic PA‐6,6 backbone at 200 and 230 °C under an inert gas flow. In the initial stage of the SSM below the melting temperature of PA‐6,6, a decrease of the molecular weight was observed due to chain scission, followed by a built up of the molecular weight and incorporation of the comonomer by postcondensation during the next stage. When the solid‐state copolymerization was continued for a sufficiently long time, the starting PA‐6,6 molecular weight was regained. The incorporation of the comonomer into the PA‐6,6 main chain was confirmed by size exclusion chromatography (SEC) with ultraviolet detection, which showed the presence of aromatic moieties in the final high‐molecular weight SSM product. The occurrence of the transamidation reaction was also proven by 1H nuclear magnetic resonance (NMR) spectroscopy. As the transamidation was limited to the amorphous phase, this SSM resulted in a nonrandom overall structure of the PA copolymer as shown by the degree of randomness determined using 13C NMR spectroscopy. The thermal properties of the SSM products were compared with melt‐synthesized copolyamides of similar chemical composition. The higher melting and higher crystallization temperatures of the solid state‐modified copolyamides confirmed their nonrandom, block‐like chemical microstructure, whereas the melt‐synthesized copolyamides were random. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5118–5129  相似文献   

20.
A series of liquid crystalline copolyesters, derived from 1,4‐hydroxy‐benzoic acid (HBA), 6‐hydroxy‐2‐naphthoic acid (HNA), terephthalic acid (TA), and hydroquinone (HQ), were prepared; crystallization, melting and solid‐state structure of the copolyesters were studied by using differential scanning calorimetry (DSC) and wide‐angle x‐ray diffraction (WAXD). It was found that the variation of melting point of the copolyesters with increasing HBA mol % exhibits eutectic melting behavior at a constant mole ratio of HNA, and the extrapolated eutectic temperature decreases linearly with increasing HNA mol %. WAXD analysis of the copolyesters indicates that the d‐spacing related to three‐dimensional order increases first and then decreases with increasing HBA mol %. The increase of the d‐spacing, consistent with looser packing of chains, leads to the reduction of melting point and most likely accounts for the eutectic behavior observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2171–2177, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号