首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal annealing process was proposed to purify the pixel regions of a liquid crystal (LC) cell with polymer walls. This technique, based on thermal‐induced phase separation, successfully evicts the residual monomers from the LC volume and significantly improves electro‐optical properties of the polymer‐wall LC devices. The influence of the annealing process on the purity of LC‐rich domain and the electro‐optic properties of a LC cell was explored with a series of experiments. According to the experimental results, the annealing technique is extremely prospective for constructing flexible polymer‐wall LC display applications.  相似文献   

2.
The interaction of proteins with endotoxins has divergent effects on lipopolysaccharide (LPS)‐induced responses, which serve as a basis for many clinical and therapeutic applications. It is, therefore, important to understand these interactions from both theoretical and practical points of view. This paper advances the design of liquid crystal (LC)‐based stimuli‐responsive soft materials for quantitative measurements of LPS–protein binding events through interfacial ordering transition. Micrometer‐thick films of LCs undergo easily visualized ordering transitions in response to proteins at LPS–aqueous interfaces of the LCs. The optical response of the LC changes from dark to bright after aqueous solutions of hemoglobin (Hb), bovine serum albumin (BSA), and lysozyme proteins (LZM) are in contact with a LPS‐laden aqueous–LC interface. The effects of interactions of different proteins with LPS are also observed to cause the response of the LC to vary significantly from one to another; this indicates that manipulation of the protein–LPS binding affinity can provide the basis for a general, facile method to tune the LPS‐induced responses of the LCs to interfacial phenomena. By measuring the optical retardation of the 4′‐pentyl‐4‐cyanobiphenyl (5CB) LC, the binding affinity of the proteins (Hb, BSA, and LZM) towards LPS that leads to different orientational behavior at the aqueous interfaces of the LCs can be determined. The interaction of proteins with the LPS‐laden monolayer is highest for LPS–Hb, followed by LPS–BSA, and least for LPS–LZM; this is in correlation with their increasing order of binding constants (LPS‐Hb>LPS‐BSA>LPS‐LZM). The results presented herein pave the way for quantitative and multiplexed measurements of LPS–protein binding events and reveal the potential of the LC system to be used as quantitative LC‐based, stimuli‐responsive soft materials.  相似文献   

3.
The circularly polarized luminescence (CPL) of chiral disubstituted liquid‐crystalline polyacetylene (di‐LCPA) can be dynamically switched and amplified from left‐ to right‐handed CPL and vice versa through the selective transmission of CPL across a thermotropic chiral nematic liquid crystal (N*‐LC) phase. By combining a chiral di‐LCPA CPL‐emitting film with an N*‐LC cell and tuning the selective reflection band of the N*‐LC phase to coincide with the CPL emission band, a CPL‐switchable cell was constructed. The phase change induced by the thermotropic N*‐LC cell by varying the temperature leads to a change in the selective transmission of CPL, which enables the dynamic switching and amplification of CPL. It is anticipated that CPL‐switchable devices might find applications in switchable low‐threshold lasers and optical memory devices.  相似文献   

4.
We have investigated the synthesis and ultrathin film forming properties of α,ω‐diamine derivatives. The amphiphiles were synthesized as precursors to the formation of ionene polymers. Two materials were investigated: oligothiophene and azobenzene functional groups. These type of materials are of great interest for the preparation of ultrathin film layers with applications for photochemical regulation of liquid crystal (LC) orientation, optical storage media, and electroluminescent displays. Azobenzene and its derivatives are well known photochemical systems exhibiting the reversible cis‐trans photoisomerization. Conjugated oligothiophene derivatives, exhibit interesting optical and electronic properties for applications such as light emitting diodes (LED)s, Schottky diodes, and thin film field‐effect transistors (TFT). The two amphiphiles behaved very differently as Langmuir monolayers and LB films. Dye aggregation was observed with the azobenzene derivatives compared with the oligothiophenes.  相似文献   

5.
Without the conventional polymer‐based liquid crystal (LC) alignment process, a newly synthesized dual photo‐functionalized amphiphile (abbreviated as ADMA1) was successfully applied as a robust photo‐reversible LC alignment layer by self‐assembly and photo‐polymerization. The LC alignment layer constructed by directly adding dual photo‐functionalized amphiphiles into LC media significantly cuts the manufacturing cost as well as opens new doors for the fabrication of novel electro‐optical devices.  相似文献   

6.
Enantiomers represent a class of compounds extensively investigated since they can show totally different behaviors when they interact with a chiral environment. Because of their identical chemical structure (they differ only in the spatial arrangement of the atoms in the molecule), the separation of optical isomers is a challenging task of analytical chemistry. So far employed methods for the separation of enantiomers are mainly based on chromatography. CE as well was considered as an analytical technique suitable for chiral separations, characterized by high efficiency and low consumption of reagent. Recently, miniaturization was introduced in LC to answer the needs to perform analyses in the minimum time, to use the smallest amount of samples and to reduce environmental pollution. Nano‐LC represents nowadays a valid alternative to the abovementioned conventional analytical techniques, and can be advantageously exploited for enantiomeric separation especially because it needs minute amounts of the chiral material necessary to carry out enantiomeric separations. This review describes the development and applications of nano‐LC in the field of chiral separations. The data reported in literature show its relevance for the study enantiomers‐chiral selectors interaction, as well as for application in pharmaceutical and clinical research.  相似文献   

7.
This work demonstrates a noninvasive approach to control alignment of liquid crystals persistently and reversibly at fluid interfaces by using a photoresponsive azobenzene‐based surfactant dissolved in an ionic liquid (IL), ethylammonium nitrate (EAN). As the first report on the orientational behavior of LCs at the IL/LC interface, our study also expands current understanding of alignment control of LCs at the aqueous/LC interface by adding electrolytes into aqueous solutions. The threshold concentration for switching the optical responses of LCs can be changed just by simply manipulating the ratio of EAN to H2O. This work will inspire fundamental studies and novel applications of using the LC‐based imaging technique to investigate various chemical and biological events in ILs.  相似文献   

8.
This article describes the syntheses and electro‐optical applications of liquid crystalline (LC) conjugated polymers, for example, poly(p‐phenylenevinylene), polyfluorene, polythiophene, and other conjugated polymers. The polymerization involves several mechanisms: the Gilch route, Heck coupling, or Knoevenagel condensation for poly(p‐phenylenevinylene)s, the Suzuki‐ or Yamamoto‐coupling reaction for polyfluorenes, and miscellaneous coupling reactions for other conjugated polymers. These LC conjugated polymers are classified into two types: conjugated main chain polymers with long alkyl side chains, namely main‐chain type LC polymers, and conjugated polymers grafting with mesogenic side groups, namely side‐chain type LC conjugated polymers. In general, the former shows higher transition temperature and only nematic phase; the latter possesses lower transition temperature and more mesophases, for example, smectic and nematic phases, depending on the structure of mesogenic side chains. The fully conjugated main chain promises them as good candidates for polarized electroluminescent or field‐effect devices. The polarized emission can be obtained by surface rubbing or thermal annealing in liquid crystalline phase, with maximum dichroic ratio more than 20. In addition, conjugated oligomers with LC properties are also included and discussed in this article. Several oligo‐fluorene derivatives show outstanding polarized emission properties and potential use in LCD backlight application. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2713–2733, 2009  相似文献   

9.
While the unique optical properties of liquid crystals (LCs) are already well exploited for flat‐panel displays, their intrinsic ability to self‐organize into ordered mesophases, which are intermediate states between crystal and liquid, gives rise to a broad variety of additional applications. The high degree of molecular order, the possibility for large scale orientation, and the structural motif of the aromatic subunits recommend liquid‐crystalline materials as organic semiconductors, which are solvent‐processable and can easily be deposited on a substrate. The anisotropy of liquid crystals can further cause a stimuli‐responsive macroscopic shape change of cross‐linked polymer networks, which act as reversibly contracting artificial muscles. After illustrating the concept of liquid‐crystalline order in this Review, emphasis will be placed on synthetic strategies for novel classes of LC materials, and the design and fabrication of active devices.  相似文献   

10.
The self‐assembly of inorganic nanoparticles into well‐ordered structures in the absence of solvents is generally hindered by van der Waals forces, leading to random aggregates between them. To address the problem, we functionalized rigid rare‐earth (RE) nanoparticles with a layer of flexible polymers by electrostatic complexation. Consequently, an ordered and solvent‐free liquid crystal (LC) state of RE nanoparticles was realized. The RE nanomaterials including nanospheres, nanorods, nanodiscs, microprisms, and nanowires all show a typical nematic LC phase with one‐dimensional orientational order, while their microstructures strongly depend on the particles’ shape and size. Interestingly, the solvent‐free thermotropic LCs possess an extremely wide temperature range from ?40 °C to 200 °C. The intrinsic ordering and fluidity endow anisotropic luminescence properties in the system of shearing‐aligned RE LCs, offering potential applications in anisotropic optical micro‐devices.  相似文献   

11.
The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen‐bonded homopolymers from a family of poly[4‐(n‐acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol‐containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix. The PL lifetimes and quantum yield in cholesteric nanocomposites are higher than those in smectic ones. This is interpreted in terms of a higher order of the smectic matrix in comparison to the cholesteric one. CdSe QDs in the ordered smectic matrix demonstrate a splitting of the exciton PL band and an enhancement of the photoinduced differential transmission. These results reveal the effects of the structure of polymer LC matrices on the optical properties of embedded QDs, which offer new possibilities for photonic applications of QD–LC polymer nanocomposites.  相似文献   

12.
《Analytical letters》2012,45(15):2946-2948
Abstract

The liquid chromatography isotope dilution mass spectrometry (LC/ID‐MS) has recently been used for the certification of organic reference materials. We are developing a new definitive method of LC‐ID/MS as to determination creatinine in serum. We prepared a stock standard solution of creatinine in 10 mmol/l of acetic acid at a concentration of 8.84 mmol/l. With this acetic acid concentration, creatinine dissolved completely in a few minutes. This stock standard solution was stable at least for 1 year and has widely applications (such as GC‐MS, LC‐MS, LC, colorimetric method, etc).  相似文献   

13.
Liquid‐crystal (LC) droplet patterns are formed on a glass slide by evaporating a solution of nematic LC dissolved in heptane. In the presence of an anionic phospholipid, 1,2‐dioleoyl‐sn‐glycero‐3‐phospho‐rac‐(1‐glycerol) (DOPG), the LCs display a dark cross pattern, indicating a homeotropic orientation. When LC patterns are incubated with an aqueous mixture of DOPG and poly‐L ‐lysine (PLL), there is a transition in the LC pattern from a dark cross to a bright fan shape due to the electrostatic interaction between DOPG and PLL. Known to catalyze the hydrolysis of PLL into oligopeptide fragments, trypsin is preincubated with PLL, significantly decreasing the interactions between PLL and DOPG. LCs adopt a perpendicular orientation at the water–LC droplet interface, which gives rise to a dark cross pattern. This optical response of LC droplets is the basis for a quick and sensitive biosensor for trypsin.  相似文献   

14.
The effects of crosslinking polymer networks (PNs) on the molecular reorientation and electro‐optical properties of vertically aligned (VA) liquid crystal (LC) devices are investigated by applying an in‐plane switching (IPS) electric field. Through the polymerization process, crosslinking PNs are developed on the substrate surface, effectively increasing the anchoring energy and governing the LC molecular reorientation. With its stronger anchoring effect, the PNs cell shows good light transmittance and excellent vertical alignment quality, as compared to the pure LC cell. Furthermore, the alignment transformation and transmittance bounce resulting from the transient process of LC molecular reorientation are eliminated when the cell is operated at high voltages. The rising‐time (tr) and falling‐time (tf) responses of the PNs cell are significantly improved, and around 36% improvement in the optical switching response is obtained. In addition, the dynamic gray‐level tr and tf responses of the PNs cell are enhanced by around 55% and 42%, respectively, at a low driving voltage (~12 V). This developed VA‐IPS LC/PNs cell benefits not only the LC molecular alignment but also the electro‐optical performance. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1123–1130  相似文献   

15.
Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high‐precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment δ13C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline‐resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed‐mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed‐mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed‐mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a practical guide for the development of new chromatographic methods compatible with LC/IRMS applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A new class of liquid‐crystalline (LC) homopolymers of poly{11‐[4‐(3‐ethoxycarbonyl‐coumarin‐7‐oxy)‐carbonylphenyloxy]‐undecyl methacrylate} containing a coumarin moiety as a photocrosslinkable unit with various polymerization degrees and their LC‐coil diblock and LC‐coil‐LC triblock copolymers with polystyrene as the coil segment was synthesized with the atom transfer radical polymerization method. All the homopolymers and block copolymers synthesized here exhibited narrow polydispersities, indicating well‐controlled living polymerization. Differential scanning calorimetry, polarized optical microscopy, and wide‐angle X‐ray diffraction confirmed that all the homopolymers and block copolymers exhibit a monolayer smectic A phase. Coumarin moieties in the polymers can be photodimerized under λ > 300 nm light irradiation to yield crosslinked network structures, which improve the thermal stability of a polymer nanostructure because of microphase separation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2197–2206, 2003  相似文献   

17.
Liquid‐crystalline (LC) hybrid polymers with functionalized silsesquioxanes with various proportions of LC monomer were synthesized by the reaction of polyhedral oligomeric silsesquioxane (POSS) macromonomer with methacrylate monomer having an LC moiety under common free‐radical conditions. The obtained LC hybrid polymers were soluble in common solvents such as tetrahydrofuran, toluene, and chloroform, and their structures were characterized with Fourier transform infrared, 1H NMR, and 29Si NMR. The thermal stability of the hybrid polymers was increased with an increasing ratio of POSS moieties as the inorganic part. Because of the steric hindrance caused by the bulkiness of the POSS macromonomer, the number‐average molecular weight of the hybrid polymers gradually decreased as the molar percentage of POSS in the feed increased. Their liquid crystallinities were very dependent on the POSS segments of the hybrid polymers behaving as hard, compact components. The hybrid polymer with 90 mol % LC moiety (Cube‐LC90) showed liquid crystallinity, larger glass‐transition temperatures, and better stability with respect to the LC homopolymer. The results of differential scanning calorimetry and optical polarizing microscopy showed that Cube‐LC90 had a smectic‐mesophase‐like fine‐grained texture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4035–4043, 2001  相似文献   

18.
In this paper, polymer dispersed liquid crystals (PDLC) films with LC content as low as 40 wt% were prepared, and the electro‐optical properties were carefully investigated. To accomplish this, different (meth)acrylate copolymerizaiton monomers have been used. The electro‐optical properties and morphologies of the PDLC films were strongly influenced by the chemical structure of copolymerization monomers (hydroxypropyl methacrylate (HPMA), glycidyl methacrylate, hydroxypropyl acrylate) and their feed ratio. Lower driven voltage and higher contrast ratio were achieved when the PDLC films showed a morphology with suitably LC domain size. At high HPMA content, a thin polymer film was formed on the surface of PDLC samples, which is beneficial to decrease the total LC content in PDLC devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The ability to optically reconfigure an existing actuator of a liquid crystal polymer network (LCN) so that it can display a new actuation behavior or function is highly desired in developing materials for soft robotics applications. Demonstrated here is a powerful approach relying on selective polymer chain decrosslinking in a LCN actuator with uniaxial LC alignment. Using an anthracene‐containing LCN, spatially controlled optical decrosslinking can be realized through photocleavage of anthracene dimers under 254 nm UV light, which alters the distribution of actuation (crosslinked) and non‐actuation (decrosslinked) domains and thus determines the actuation behavior upon order‐disorder phase transitions. Based on this mechanism, a single actuator having a flat shape can be reconfigured in an on‐demand manner to exhibit reversible shape transformation such as self‐folding into origami three‐dimensional structures. Moreover, using a dye‐doped LCN actuator, a light‐fueled microwalker can be optically reconfigured to adopt different locomotion behaviors, changing from moving in the laser scanning direction to moving in the opposite direction.  相似文献   

20.
Liquid crystalline elastomers (LCEs) have been actively investigated as stimuli‐controlled actuators and soft robots. The basis of these applications is the ability of LCEs to undergo a reversible shape change upon a liquid crystalline (LC)‐isotropic phase transition. Herein, we report the synthesis of a novel LCE based on a side‐chain liquid crystalline polymer (SCLCP). In contrast to known LCEs, this LCE exhibits a striking anomalous shape change. Subjecting a mechanically stretched monodomain strip to LC‐disorder phase transition, both the length and width of the strip contract in isotropic phase, and both elongate in LC phase. This thermally induced behaviour is the result of a subtle interplay between the relaxation of polymer main chain oriented along the stretching direction and the disordering of side‐group mesogens oriented perpendicularly to the stretching direction. This finding points out potential design of LCEs of this peculiar type and possible applications to exploit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号