首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Polysulfonylamines. CXI. The First X‐Ray Structures of Cationic Diorganyltin(IV) Dichelates [R2Sn(L–L)2]2⊕ Involving Bidentate Phosphine Oxide Ligands: Di(methanesulfonyl)amide as a Non‐Coordinating Counter‐Ion The reaction of Me2Sn(A)2, where A = (MeSO2)2N, with DPPOE = ethane‐1,2‐diylbis(diphenylphosphine oxide) or CDPPOET = cis‐ethene‐1,2‐diylbis(diphenylphosphine oxide) yields the ionic dichelates [Me2Sn(dppoe)2]2⊕ · 2 A ( 1 ; monoclinic, space group P21/c) and [Me2Sn(cdppoet)2]2⊕ · 2 A ( 2 ; monoclinic, P21/n). A solvated variety of 2 , [Me2Sn(cdppoet)2]2⊕ · 2 A · Et2O · 0.15 MeCN ( 4 ; triclinic, P 1), was serendipitously obtained by thermal degradation of the new compound [Me2Sn(A)(μ‐OH)]2 · 2 CDPPOET in an MeCN/Et2O medium. The crystals of 1 , 2 and 4 consist of discrete formula units (one independent unit for 1 and 2 , two independent units for 4 ); in the structure of 4 , the solvent molecules are located in lattice cavities. All the tin atoms lie on crystallographic inversion centres and display moderately distorted octahedral C2O4 coordinations with short Sn–O bonds in the range 218–223 pm. Within the formula units, the anions are connected to the P–CH donor groups of the chelating ligands by C–H…O/N interactions, some of which are remarkably short (e.g. in 1 : H…O 220 pm, C–H…O 170°; H…N 242 pm, C–H…N 153°).  相似文献   

2.
Polysulfonylamines. CXVI. Destructive Complexation of the Dimeric Diorganyltin(IV) Hydroxide [Me2Sn(A)(μ‐OH)]2 (HA = Benzene‐1,2‐disulfonimide): Formation and Structures of the Mononuclear Complexes [Me2Sn(A)2(OPPh3)2] and [Me2Sn(phen)2]2⊕ · 2 A · MeCN Destructive complexation of the dimeric hydroxide [Me2Sn(A)(μ‐OH)]2, where A is deprotonated benzene‐1,2‐disulfonimide, with two equivalents of triphenylphosphine oxide or 1,10‐phenanthroline in hot MeCN produced, along with Me2SnO and water, the novel coordination compounds [Me2Sn(A)2(OPPh3)2] ( 3 , triclinic, space group P 1) and [Me2Sn(phen)2]2⊕ · 2 A · MeCN ( 4 , monoclinic, P21/c). In the uncharged all‐trans octahedral complex 3 , the heteroligands are unidentally O‐bonded to the tin atom, which resides on a crystallographic centre of inversion [Sn–O(S) 227.4(2), Sn–O(P) 219.6(2) pm, cis‐angles in the range 87–93°; anionic ligand partially disordered over two equally populated sites for N, two S and non‐coordinating O atoms]. The cation occurring in the crystal of 4 has a severely distorted cis‐octahedral C2N4 coordination geometry around tin and represents the first authenticated example of a dicationic tin(IV) dichelate [R2Sn(L–L′)2]2⊕ to adopt a cis‐structure [C–Sn–C 108.44(11)°]. The five‐membered chelate rings are nearly planar, with similar bite angles of the bidentate ligands, but unsymmetric Sn–N bond lengths, each of the longer bonds being trans to a methyl group [ring 1: N–Sn–N 71.24(7)°, Sn–N 226.81(19) and 237.5(2) pm; ring 2: 71.63(7)°, 228.0(2) and 232.20(19) pm]. In both structures, the bicyclic and effectively CS symmetric A ions have their five‐membered rings distorted into an envelope conformation, with N atoms displaced by 28–43 pm from the corresponding C6S2 mean plane.  相似文献   

3.
Structures of Ionic Di(arenesulfonyl)amides. 4. Cross‐Linking Lamellar Layers by O–H…O Hydrogen Bonds: Structures of MN(SO2C6H4‐4‐COOH)2 (M = K, Rb, Cs) Syntheses and low‐temperature X‐ray crystal structures are reported for MIN(SO2C6H4‐4‐COOH)2, where M = K (monoclinic, space group P21/c, Z = 4, Z′ = 1), M = Rb (monoclinic, P21, Z = 4, Z′ = 2), or M = Cs (monoclinic, P21/c, Z = 4, Z′ = 1). The three compounds are examples of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and N(SO2)2 groups and the outer regions are formed by the 4‐carboxy substituted phenyl rings of the folded anions. In the two‐dimensional coordination networks, K and Cs adopt irregular and chemically distinct [MN1O7] octacoordinations, whereas the independent Rb cations attain irregular nonacoordinations of type [RbN2O7] or [RbO9] respectively. The crystal packings of the compounds are governed by self‐assembly of parallel layers through exhaustive hydrogen bonding between carboxylic acid groups, resulting in a dense array of cyclic (COOH)2 motifs within the interlamellar regions.  相似文献   

4.
Metal Salts of Benzene‐1,2‐di(sulfonyl)amine. 3. Crystal Structures of the Free Protonated Ligand HN(SO2)2C6H4 (= HZ) and the Lamellar Cesium Salt CsZ Benzene‐1,2‐di(sulfonyl)amine ( 1 ; HZ), known since 1921, is a very strong NH acid and readily reacts with aqueous CsCl to form crystalline CsZ ( 3 ). For both compounds, crystal structures were determined by X‐ray diffraction at –100 °C ( 1 : monoclinic, space group P21/n, Z = 4; 3 : orthorhombic, Cmcm, Z = 4). In 1 , the five‐membered 1,3,2‐dithiazole heterocycle possesses an envelope conformation, the N atom lying 29.4(2) pm outside the mean plane of the S–C–C–S moiety [S–N 167.06(15) and 167.53(15) pm, S–N–S 114.57(8)°]. In the crystal, HZ molecules are linked into chains by a conventional N–H…O hydrogen bond and further associated via four weak C–H…O bonds to form a three‐dimensional network. The conjugate Z ion in the layered structure of the salt 3 displays crystallographic C2v symmetry, leading to an ideally planar bicyclic framework [S–N 158.29(15) pm, S–N–S 116.53(17)°]. Each of the five electronegative atoms bridges two cations, Cs attaining a tenfold coordination by forming bonds to two (O,N,O)‐chelating and four κ1O‐monodentate ligands. The Cs–O/N interactions create a polar [CsN(SO2)2] lamella, which is lipophilically wrapped by parallel benzo rings protruding perpendicularly from its surfaces. In contrast to the previously reported lamellar metal di(arenesulfonyl)amides, the aromatic groups pertaining to adjacent layers of 3 are seen to be markedly interlocked.  相似文献   

5.
Structures of Ionic Di(arenesulfonyl)amides. 2. Silver(I) Di(arenesulfonyl)amides and a Silver(I) (Arenesulfonyl)(alkanesulfonyl)amide: From Ribbons to Lamellar Layers Exhibiting Short C–H…Hal–C or C–Br…Br–C Interlayer Contacts Low‐temperature X‐ray crystal structures are reported for AgN(SO2C6H4‐4‐X)2 · H2O, where X is Cl ( 4 ) or Br ( 5 ), and for AgN(SO2Ph)(SO2Me) ( 6 ). Compounds 4 and 5 and the previously described F analogue ( 3 ) are isotypic, though not strictly isostructural (monoclinic, space group P21/c, Z = 4, but egregiously large discrepancies of x and z coordinates for corresponding atoms). Throughout this triad, glide‐plane related formula units are linked along the z axis to form infinite ribbons [(ArSO2)2N–Ag(μ‐H2O)], in which Ag extends its coordination number to five by accepting one Ag–O bond from each of the (ArSO2)2N ligands in the adjacent units. By means of O–H…O(S) hydrogen bonds, the ribbons are associated into lamellar layers parallel to the xz plane. Owing to the folded conformation of the anions, the layers display an inner polar region of Ag atoms, H2O molecules and N(SO2)2 groups, outer apolar regions of stacked pairs of aryl rings, and interlayer regions hosting the halogen atoms. Inspection of the latter areas provides sound evidence that the distinct juxtapositions of adjacent layers arise from specific interlamellar attractions and repulsions ( 3 : two C–H…F, all F…F beyond the van der Waals limit dW; 4 : one C–H…Cl, close packing of Cl atoms at Cl…Cl ≈ dW; 5 : one C–H…Br, one short Br…Br contact < dW, all other Br…Br > dW). Structure 6 (monoclinic, P21/n, Z = 4) consists of a lamellar coordination polymer, in which the cation accepts one Ag–N and three Ag–O bonds drawn from four different anions. On account of crystal symmetry, the extended ligand has its Ph and Me groups distributed on both sides of the sheet, the phenyl rings forming the apolar regions of the lamella, whereas the smaller methyl groups are integrated into the corrugated inorganic region by means of weak C–H…O hydrogen bonds.  相似文献   

6.
Structures of Ionic Di(arenesulfonyl)amides. 3. Four Sodium Di(arenesulfonyl)amides: Lamellar Layers Exhibiting Short C–H…O(nitro), C–H…F–C, or C–I…I–C Interlayer Contacts Low‐temperature X‐ray crystal structures are reported for NaN(SO2C6H4‐4‐X)2 · n H2O, where X = NO2 and n = 3 ( 1 , monoclinic, space group P21, Z = 2), X = F and n = 3 ( 2 , monoclinic, P21/c, Z = 4), X = F and n = 1 ( 3 , orthorhombic, Pccn, Z = 8), or X = I and n = 1 ( 4 , monoclinic, P21/c, Z = 4). The four compounds are examples of layered inorgano‐organic solids where the inorganic component is comprised of metal cations, N(SO2)2 groups and H2O molecules and the outer regions are formed by the 4‐substituted phenyl rings of the folded anions. In the two‐dimensional coordination networks, the cations adopt either an octahedral [Na(O–S)2(OH2)4] ( 1 , 2 ) or a distorted monocapped octahedral [NaN(O–S)4(OH2)2] ( 3 , 4 ) environment. Taking into account the differing crystal symmetries within the two pairs of compounds, it is remarkable that the trihydrates 1 / 2 and the monohydrates 3 / 4 each display chemically identical and nearly isometric Na–O or Na–O/N networks. In the crystal packings, parallel layers are connected through weak hydrogen bonds C–H…O(nitro) ( 1 ) or C–H…F ( 2 , 3 ), or through short “type I” I…I contacts ( 4 ). There is good evidence that the strikingly distinct crystal symmetries in the halogenated homologues 3 / 4 are determined by the specific complementarity requirements of the interlayer binding centres.  相似文献   

7.
Structures of Ionic Di(arenesulfonyl)amides. 8. Sodium Bis[di(4‐fluorobenzenesulfonyl)amido‐N]argentate: A Heterobimetallic Complex Exhibiting a Lamellar Layer Structure and Short C–H···F–C Interlayer Contacts Na[Ag{N(SO2–C6H4–4‐F)2}2] (monoclinic, C2/c, Z′ = 1/2) is the first heterobimetallic representative in a well‐documented class of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and coordinating N(SO2)2 groups and the outer regions are formed by the aromatic rings of the di(arenesulfonyl)amide entities, which adopt a folded conformation approximating to mirror symmetry. The inversion‐symmetric bis(amido)argentate unit of the novel compound displays an exactly linear N–Ag–N core and short Ag–N bonds of 217.55(17) pm (at ?140 °C); the coordination number of the silver ion is extended to 2 + 6 by four internal and two external Ag···O secondary interactions. The polar lamella is constructed from rows of Na+ ions located on twofold axes, alternating with bis(amido)argentate strands reinforced by Ag···O interactions and weak C–H···O hydrogen bonds; Na+ is embedded in an O6 environment. Adjacent layers are cross‐linked via short C–H···F–C contacts suggestive of weak hydrogen bonding enhanced by cooperativity.  相似文献   

8.
Structures of Ionic Di(arenesulfonyl)amides. 6. Limits to the Formation of Lamellar Metal Di(arenesulfonyl)amides: Three Lithium Complexes and One Cadmium Complex According to low‐temperature X‐ray studies, the new compounds LiN(SO2C6H4‐4‐X)2 · 2 H2O, where X = COOH ( 1 ) or COOMe ( 2 ), LiN(SO2C6H4‐4‐CONH2)2 · 4 H2O ( 3 ), and Cd[N(SO2C6H4‐4‐COOH)2]2 · 8 H2O ( 4 ) crystallize in the triclinic space group P1 ( 1 – 3 : Z′ = 1; 4 : Z′ = 1/2, Cd2+ on an inversion centre) and display almost perfectly folded anions approximating to mirror symmetry. The lithium ions in 1 – 3 have distorted tetrahedral environments respectively set up by two O=S groups drawn from different anions and two water molecules, two O=S groups of a chelating anion and two water molecules, or one O=C group and three water ligands, whereas the cation of 4 is fully hydrated to form an octahedral [Cd(H2O)6]2+ complex. The structure refinements for 3 and 4 were marred by positional disorder of the non‐coordinating N(SO2)2 moieties. Compounds 1 and 4 extend a previously described series of lamellar metal di(arenesulfonyl)amides where the two‐dimensional inorganic component is comprised of cations, N(SO2)2 groups and water molecules and the outer regions are formed by the 4‐substituted phenyl rings. Both crystal packings are governed by self‐assembly of parallel layers through exhaustive hydrogen bonding between carboxylic groups, and there is good evidence that the labile inorganic networks, generated via Li–O and hydrogen bonds in 1 or solely hydrogen bonds in 4 , are efficiently stabilized by the strong cyclic (COOH)2 motifs within the interlayer regions. In the absence of these, the lamellar architecture is seen to collapse in 2 and 3 , where the carboxyl groups are replaced by methoxycarbonyl or carbamoyl functions and the inorganic components are segregated in parallel tunnels pervading the anion lattices.  相似文献   

9.
Polysulfonylamines. CLXXVIII. Onium Salts of Benzene‐1,2‐di(sulfonyl)amine (HZ): A Second Crystal Form of the Ammonium Salt NH4Z·H2O and Crystal Structure of the Bis(triphenylphosphoranylidene)ammonium Salt [Ph3PNPPh3]Z A dimorphic form of NH4Z·H2O, where Z? is N‐deprotonated ortho‐benzenedisulfonimide, has been obtained and structurally characterized (previously known form 1A : monoclinic, P21/c, Z′ = 1; new polymorph 1B : monoclinic, P21/n, Z′ = 1). Both structures are dominated by an abundance of classical hydrogen bonds N+–H/O–H···O=S/OH2, whereby the anionic N? function does not act as an acceptor. The major difference between the dimorphs arises from the topology of the hydrogen bond network, which is two‐dimensional in 1A , leading to a packing of discrete lamellar layers, but three‐dimensional in 1B . Moreover, the latter network is reinforced by a set of weak C–H··O/N hydrogen bonds, whereas the layered structure of 1A displays only one independent C–H···O bond, providing a link between adjacent layers. The compound [Ph3PNPPh3]Z ( 2 , monoclinic, P21/c, Z′ = 1) is the first structurally authenticated example of an ionic Z? derivative in which the cation contains neither metal bonding sites nor strong hydrogen bond donors. This structure exhibits columns of anions, surrounded by four parallel columns of cations, giving a square array. The large cations are associated into a three‐dimensional framework via weak C–H···C(π) interactions and an offset face‐to‐face phenyl interaction, while the anions occupy tunnels in this framework and are extensively bonded to the surrounding cations by C–H···O/N? hydrogen bonds and C–H···C(π) interactions.  相似文献   

10.
Three polymorphs of barium dihydrogen‐hypodiphosphate(IV)‐dihydrate, BaH2P2O6 · 2H2O ( A , B and C ), were obtained and structurally characterized by single‐crystal X‐ray diffraction. A crystallizes in the monoclinic space group P21/n (no. 14) with a = 7.459(1) Å, b = 8.066(1) Å, c = 12.460(2) Å, β = 91.27(1) ° and Z = 4. B crystallizes in the monoclinic space group C2/c (no. 15) with a = 11.049(8) Å, b = 6.486(3) Å, c = 10.956(6) Å, β = 106.89(5) ° and Z = 4. C crystallizes in the orthorhombic space group C2221 (no. 20) with a = 9.193(3) Å, b = 6.199(2) Å, c = 12.888(4) Å and Z = 4. Discrete [H2P2O6]2– units, barium cations and water molecules, held together by intermolecular hydrogen bonds of the type O–H ··· O, build up the structures of the three polymorphs. The phase purity of A and C was verified by powder diffraction measurements.  相似文献   

11.
A new cyano‐bridged binuclear 4f‐3d complex Sm(DMSO)4‐(H2O)3Cr(CN)6 was synthesized and characterized by single crystal structure analysis. It crystallizes in monoclinic, space group P21 with a=0.9367(2) nm, b = 1.3917(3) nm, c = 1.1212(2) run, β = 99.88(3)° and Z = 2. In this binuclear complex, Sm atom is eight coordinated and linked to the Cr atom by a cyano bridge. The molecules packs to form 3D structure due to the hydrogen bonds among them. [K3(18‐C‐6)3(H2O)4]Cr(CN)6·3H2O (18‐C‐6 represents 18‐crown‐6‐ether) that was synthesized as a byproduct in the preparation of a Gd—Cr complex is also structurally characterized. Crystal data: triclinic, space group P‐l with a = 1.0496(7) nm, b= 1.1567(14) nm, c = 1.3530(13) nm, a = 94.15(9)°, β = 96.04(8)°, γ = 95.25(9)° and Z = l. [K3(18‐C‐6)3(H2O)4]‐Cr(CN)6·3H2O consists of ionic [K3(18‐C‐6)3(H2O)4]3+ and [Cr(CN)6]3‐ pairs, of which the [K3(18‐C‐6)3(H2O)4]3+ ion is a trinuclear duster connected by water, and K atoms are eight coordinated by eight oxygen atoms of one 18‐C‐6 and two water molecules.  相似文献   

12.
Metal Salts of Benzene‐1, 2‐di(sulfonyl)amine. 9. The Barium Complex [[Ba{C6H4(SO2)2N}2(H2O)22]: A Columnar Coordination Polymer with Lamellar Crystal Packing The title complex, obtained by treating ortho‐benzenedi‐sulfonimide with Ba(OH)2 in aqueous solution, has been characterized by low‐temperature X‐ray diffraction (monoclinic, space group C2/c, Z = 4, Ba2+ on a crystallographic twofold axis). The cation attains a tenfold coordination by accepting bonds from two water molecules, four κ1O‐bonding anions and two (O, N)‐chelating anions. The cation‐anion interactions create columnar strands parallel to the z axis, from which protrude twin stacks of benzo rings in the directions ±x, and water molecules and non‐coordinating sulfonyl oxygen atoms in the directions ±y. Adjacent strands related by translation parallel to y are associated via O(W)—H···O=S hydrogen bonds to form lamellar sandwich layers. The contiguous benzo rings of adjacent layers are markedly interlocked.  相似文献   

13.
The reaction of PhN3(H)C6H4N3(H)Ph with Hg(NO3)2 in THF in the presence of triethylamine yields {Hg[PhN3C6H4N3(H)Ph](NO3)} as a yellow powder that can be recrystallized from THF/acetone. The crystals belong to the monoclinic system, space group P21 with the cell dimensions a = 9.639(2), b = 5.412(1), c = 19.675(4) Å, β= 97.47(3)°, V = 1017.7 (4) Å3, Z = 2. The crystal structure determination (2668 unique reflections with [I>2σ(I)], 262 parameters, R1 = 0.0393) shows that the structure consists of mononuclear complexes. Hg atoms are linearly coordinated by one Nα atom of the triazenide unit of the planar ligand [Hg‐N(1) = 2.101(8) Å] and an O atom of the NO3 ion [Hg‐O(1) = 2.11(1) Å]. Additional weak Hg‐N contacts [Hg‐N(4) = 2.662(9) and Hg‐N(3) = 2.851(9) Å] and an intramolecular hydrogen bond between the triazenide hydrogen and an O atom of the nitrate group are observed [N(6)‐H(6)···O(2) = 2.92(2) Å]. The complexes are stacked to infinite chains by metal‐arene π‐interactions. Each Hg atom is coordinated by the terminal phenyl rings of two neighboring complexes [Hg‐C from 3.40(1) to 4.10(1) Å] in a η2 fashion.  相似文献   

14.
The novel dinuclear Ni2+ complex [Ni2(μ‐Cl)(μ‐OAc) (EGTB)]·Cl·ClO4·2CH3OH, where EGTB is N, N, N′, N′‐tetrakis (2‐benzimidazolyl methyl‐1, 4‐di‐ethylene amino)glycol ether, crystallizes in the orthorhombic space group Pnma with a = 15.272(2), b = 14.768(2), c = 22.486(3) Å, V = 5071.4(12) Å3, Z = 4, Dcalc = 1.414 g cm?3, and is bridged by triply bridging agents of a chloride ion, an acetate and an intra‐ligand (‐OCH2CH2O‐) group. The nickel coordination geometry is that of a slightly distorted octahedron with a NiN3O2Cl arrangement of the ligand donor atoms. The Ni–Cl distance is 2.361(2) Å, and two Ni–O distances are 1.996(5) and 2.279(6) Å. The three Ni–N distances are 2.033(7), 2.060(6), and 2.166(6) Å with the Ni–N bond trans to an ether oxygen the shortest, the Ni–N bond trans to an acetate oxygen the middle and the Ni–N bond trans to Cl the longest.  相似文献   

15.
Polysulfonylamines. CLII. Crystal Structures of Metal Di(methanesulfonyl) amides. 6. Three Layer Structures: The Isotypic Binary Compounds M[(MeSO2)2N]2 (M = Sr, Pb) and the Ethanol Solvate Pb[(MeSO2)2N]2 · EtOH Low‐temperature X‐ray crystal structures are reported for the layer compounds SrA2 (monoclinic, space group P21/n, Z′ = 1), PbA2 (isotypic and isostructural with SrA2), and PbA2·EtOH (triclinic, P1¯, Z′ = 1), where A denotes the anion obtained by deprotonation of the strong NH acid (MeSO2)2NH. The ternary compound appears to be the first crystallographically established ethanol solvate of a lead(II) complex. In the two‐dimensional coordination networks, the cations adopt either a distorted cubic or, in the solvate, an irregular (O6N2)‐octacoordination, the metal centres of the isotypic structures forming close contacts to two (O, N)‐chelating and four κ1O‐bonding anions, whereas in the solvate one of the latter ligands is displaced by an EtOH molecule. In the isotypic structures, the Pb—O distances are systematically longer than the Sr—O distances and the Pb—N bonds shorter than the Sr—N bonds, which correlates with the softer character of Pb2+ as compared to Sr2+. The 6s lone pair on Pb2+ is stereochemically inactive in both lead compounds. Analogies and discrepancies between the layer architectures are discussed in detail, including an evaluation of short C—H···O contacts in terms of weak hydrogen bonding. Two complexes of composition PbA2·2 L, where L is pyridine or 1, 10‐phenanthroline, have been synthesized and characterized by analytical methods.  相似文献   

16.
Three 3, 5‐dimethylpyrazole (pz*) copper(II) complexes, [Cu(pz*)4(H2O)](ClO4)2 ( 1 ), [Cu(pz*)2(NCS)2]·H2O ( 2 ), and [Cu(pz*)2(OOCCH=CHCOO)(H2O)]·1.5H2O ( 3 ), have been synthesized and characterized with single crystal X‐ray structure analysis. 1 crystallizes in the tetragonal space group, 14/m, with a = 14.027 (3) Å, c = 16.301 (5) Å, and Z = 4. 2 crystallizes in the monoclinic space group, P21/c, with a = 8.008 (3) Å, b = 27.139 (9) Å, c = 8.934 (3) Å, β = 106.345 (6)°, and Z = 4. 3 crystallizes in the triclinic space group, P1¯, with a = 7.291 (9) Å, b = 10.891 (13) Å, c = 11.822 (14) Å, α = 80.90 (2)°, β = 79.73(2)°, γ = 70.60(2)°, and Z = 2. In 1 , one water molecule and four pz* ligands are coordinated to CuII. Two [Cu(pz*)4(H2O)]2+ units are connected to ClO4 via hydrogen bonds. One lattice water molecule is found in the unit cell of 2 , which forms an one‐dimensional chain via intermolecular hydrogen bonds with the N‐H atom of pz*. In 3 , the oxygen atom of the coordinated water molecule is connected with two C=O groups of two neighbouring maleic acid molecules to form a linear parallelogram structure. Another C=O group of maleic acid forms a hydrogen bond with the N‐H atom of pz* to create a two‐dimensional structure. The spectroscopic and bond properties are also discussed.  相似文献   

17.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

18.
The title compound, [(Z)‐4‐allyl‐2‐(2‐hydroxybenzylidene)thiosemicarbazide‐κS][(E)‐4‐allyl‐1‐(2‐oxidobenzylidene)thiosemicarbazidato‐κ3O,N1,S]copper(II) monohydrate, [Cu(C11H11N3OS)(C11H13N3OS)]·H2O, crystallized as a rotational twin in the monoclinic crystal system (space group Cc) with two formula unit (Z′ = 2) in the asymmetric unit, one of which contains an allyl substituent disordered over two positions. The CuII atom exhibits a distorted square‐planar geometry involving two differently coordinated thiosemicarbazone ligands. One ligand is bonded to the CuII atom in a tridentate manner via the phenolate O, azomethine N and thioamide S atoms, while the other coordinates in a monodentate manner via the S atom only. The complex is stabilized by an intramolecular hydrogen bond, which creates a six‐membered pseudo‐chelate metalla‐ring. The structure analysis indicates the presence of the E isomer for the tridentate ligand and the Z isomer for the monodentate ligand. The crystal structure contains a three‐dimensional network built from intermolecular O—H...O, N—H...O, O—H...N and N—H...S hydrogen bonds.  相似文献   

19.
Polysulfonylamines. CLX. Crystal Structures of Metal Di(methanesulfonyl)amides. 10. The Three‐Dimensional Coordination Polymers M[(CH3SO2)2N], where M is Potassium, Rubidium, Cesium (Isotypic Structures for M = K, Rb) Low‐temperature X‐ray crystal structures are reported for KA (monoclinic, space group P21/c, Z′ = 1), RbA (isotypic and isostructural with KA), and CsA (monoclinic, P21/n, Z′ = 1), where A denotes the anion obtained by deprotonation of the strong nitrogen acid (MeSO2)2NH. In KA and RbA, the anion is distorted into a rare C1 conformation, whereas the standard C2 conformation is retained in the cesium complex. The structures consist of three‐dimensional coordination networks, in which each cation adopts an irregular (O6N)‐heptacoordination by forming close contacts to one (O, N)‐chelating, one (O, O)‐chelating and three κ1O‐bonding ligands; however, the coordination number for Cs+ is effectively increased to 8 by a very short Cs···Cs contact distance of 422.5 pm. The crystal packings of the isotypic compounds KA and RbA display lamellar layer substructures that involve six independent ligand‐metal bonds and comprise an internal cation lamella and peripheral regions built up from anion monolayers; the 3D framework is completed by one independent M—O bond cross‐linking the layer substructures. In contrast, CsA features anion monolayers that intercalate planar zigzag chains of cations (Cs···Cs alternatingly 422.5 and 487.5 pm, Cs···Cs···Cs 135.7°), whereby each chain is surrounded and coordinated by four anion stacks and each anion stack connects two cation chains. All structures exhibit close C—H···A interanion contacts consistent with weak hydrogen bonding.  相似文献   

20.
Pale yellow single crystals of [O=C(NPPh3)C(I)=C(NPPh3)‐C(NPPh3)2]+I·1.5 thf ( 1 ·1.5 thf) have been obtained by the reaction of INPPh3 with thallium in thf suspension. They are characterized by IR spectroscopy and by a crystal structure determination. 1 ·1.5 thf crystallizes in the monoclinic space group P21/n, Z = 4, lattice dimensions at ‐83?C: a = 1101.7(1), b = 3449.0(2), c = 2000.4(1) pm, β = 104.88(1)?, R1 = 0.0382. 1 can be understood as a cationic variation of (Z)‐2‐butenale in which all H atoms are substituted by triphenylphosphoraneimine residues and by a iodine atom, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号