首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cluster Synthesis by Photolysis of R3PAuN3. VIII. Synthesis and Crystal Structure of [(Ph3PAu)5Mo(CO)4]PF6 · CH2Cl2 and (Ph3PAu)3Co(CO)3 Photolysis of a mixture of Ph2PAuN3 and Mo(CO)6 in THF yields [(Ph3PAu)5Mo(CO)4]+ (1), which can be crystallized from CH2Cl2/diisopropylether as orange 1 · PF6 · CH2Cl2 with the space group P21/c and a = 1681.4(5), b = 2215.6(12), c = 2761.5(9) pm, β = 91.54(3)°, Z = 4. The Au5Mo center of cluster 1 forms a capped trigonal bipyramid with the Mo atom in equatorial position and almost equal Mo? Au distances between 279.9(5) and 284.6(7) pm to all five Au atoms. The Au? Au distances range from 272.2(4) to 301.3(4) pm. The Mo(CO)4 group causes three v(C0) at 1975, 1915 and 1890cm?1. Reaction of Ph3PAuCo(CO)4 with Ph3PAuPF6 affords the known cluster cation [(Ph3PAu)4Co(CO)3]+ in high yield. It can be degraded with C1? to the neutral cluster (Ph3PAu)3Co(CO)3 (2). 2 forms air stable, yellow crystals with the space group P21/n and a = 1359.4(4), b = 2041.0(5), c = 1853.2(6)pm, β = 91.47(1)°, Z = 4. The Au3Co core of 2 has a tetrahedral structure with distances Co? Au between 250.4(1) and 254.0(2) pm and Au? Au between 279.5(1) and 285.1(1) pm. v(C0) are observed at 1963, 1905 and 1891 cm?1. Reaction of 2 with [(Ph3PAu)4Co(CO)3]+ yields the condensed cluster [(Ph3PAu)6AuCo2(CO)6]+.  相似文献   

2.
1,8‐Bis[(diethylamino)phosphino]naphthalene ( 1 ) reacted with dry methanol in dichloromethane to form the new bis‐phosphonite ligand 1,8‐bis[(dimethoxy)phosphino]naphthalene (dmeopn, 2 ). By oxidation of 2 with H2O2 · (H2N)2C(:O) the corresponding bis‐phosphonate, 1,8‐bis[(dimethoxy)phosphoryl]naphthalene ( 3 ), was obtained quantitatively. Reaction of 3 with phosphorus trichloride unexpectedly furnished a 2.4 : 1 mixture of the bis‐phosphonate anhydrides rac‐ and meso‐1,3‐dimethoxy‐1,3‐dioxo‐2,3‐dihydro‐1,3‐diphospha‐2‐oxaphenalene (rac‐ 4 and meso‐ 4 ) from which rac‐ 4 could be fractionally crystallised. The bis‐phosphonite 2 behaved as a normal bidentate chelate ligand towards Mo0 and PdII, and furnished the complexes [(dmeopn)Mo(CO)4] ( 5 ) and [(dmeopn)PdCl2] ( 6 ) when treated with [(nor)Mo(CO)4] or [(cod)PdCl2] (nor = norbornadiene, cod = cycloocta‐1,8‐diene). Attempts to prepare 1,8‐diphosphinonaphthalene ( 7 ) by reducing 2 or 3 with LiAlH4 or LiAlH4/TMSCl (1 : 1) (TMSCl = trimethyl chlorosilane) in THF led to inseparable mixtures of phosphorus‐containing products. Compounds 2 – 6 were characterised by 1H‐, 13C‐, and 31P‐NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis. X‐ray crystal structure analyses were carried out for the bis‐phosphonate anhydride rac‐ 4 and the palladium(II) complex 6 . The geometry of compound rac‐ 4 , in which the phosphorus atoms are connected by an oxygen atom, reveals a relief of strain from the bis‐phosphine 1 , whereas the 1,8‐P,P′‐naphthalenediyl group in 6 is surprisingly distorted; the P atoms are displaced from the naphthalene best plane by –46.7 and 54.5 pm.  相似文献   

3.
UV irradiation of the diphenylchalcogenides Ph2Se2 or Ph2Te2 in the presence of [(η5-MeCp)Mo(CO)3]2 induces rapid reaction to give the double μ-EPh bridged compounds [(η5-MeCp)Mo(CO)2(μ-EPh)]2. Subsequent decarbonylation by mild thermolysis in vacuo gives [(η5-MeCp)Mo(CO)(μ-SePh)]2 or [(η5-MeCp)Mo(CO)(μ-TePh)2 in good yields. The new compounds were characterized by elemental analysis, infrared and mass spectra. The mixed Se/ Te bridged complex [(η5-MeCp)Mo2(Co)4(μ-SePh)(μ-TePh)] was not obtained by UV irradiation of [(η5-MeCp)Mo(CO)3]2 in the presence of a mixture of Ph2Se2 and Ph2Te2.  相似文献   

4.
Reactions of monooxidized thioyl and selenoyl bis(phosphanyl)amine ligands C10H7‐1‐N(P(E)Ph2)(PPh2) [E = S ( 1 ), Se ( 2 )] with Mo(CO)4(pip)2 and W(CO)4(cod) afforded the complexes [M(CO)4{ 1 ‐κ2P,S}] [M = Mo ( 3 ), W ( 4 )] and [M(CO)4{ 2 ‐κ2P,Se}] [M = Mo ( 5 ), W ( 6 )]. Complexes 3 – 6 were characterized by multinuclear NMR (1H, 13C, 31P, and 77Se NMR) and IR spectroscopy. Crystal‐structure determinations were carried out on 3 , 5 , and 6 , which represent the first examples of structurally characterized complexes of such ligands with group‐6 metal carbonyls.  相似文献   

5.
Reaction of [(η-C7H7)Mo(CO)3][PF6] and [(η-C5H5)Fe(CO)2CH3CN][PF6] with ditertiary phosphine ligands afforded products of three types; the monosubstituted complexes [(Ring)M(CO)2Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1; Ring = η-C5H5, M = Fe, N = 1 and 2), the chelated complexes [(Ring)M(CO)Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1 and 2; Ring = η-C5H5, M = Fe, N = 1 and 2), and the dinuclear complex [{(η-C7H7)Mo(CO)2}2 -μ- Ph2PCH2CH2PPh2][(PF6)2]. Spectroscopic properties, including 31P NMR, are reported.  相似文献   

6.
The synthesis, structural characterization, and reactivity of new bridged borylene complexes are reported. The reaction of [{Cp*CoCl}2] with LiBH4 ? THF at ?70 °C, followed by treatment with [M(CO)3(MeCN)3] (M=W, Mo, and Cr) under mild conditions, yielded heteronuclear triply bridged borylene complexes, [(μ3‐BH)(Cp*Co)2(μ‐CO)M(CO)5] ( 1 – 3 ; 1 : M=W, 2 : M=Mo, 3 : M=Cr). During the syntheses of complexes 1 – 3 , capped‐octahedral cluster [(Cp*Co)2(μ‐H)(BH)4{Co(CO)2}] ( 4 ) was also isolated in good yield. Complexes 1 – 3 are isoelectronic and isostructural to [(μ3‐BH)(Cp*RuCO)2(μ‐CO){Fe(CO)3}] ( 5 ) and [(μ3‐BH)(Cp*RuCO)2(μ‐H)(μ‐CO){Mn(CO)3}] ( 6 ), with a trigonal‐pyramidal geometry in which the μ3‐BH ligand occupies the apical vertex. To test the reactivity of these borylene complexes towards bis‐phosphine ligands, the room‐temperature photolysis of complexes 1 – 3 , 5 , 6 , and [{(μ3‐BH)(Cp*Ru)Fe(CO)3}2(μ‐CO)] ( 7 ) was carried out. Most of these complexes led to decomposition, although photolysis of complex 7 with [Ph2P(CH2)nPPh2] (n=1–3) yielded complexes 9 – 11 , [3,4‐(Ph2P(CH2)nPPh2)‐closo‐1,2,3,4‐Ru2Fe2(BH)2] ( 9 : n=1, 10 : n=2, 11 : n=3). Quantum‐chemical calculations by using DFT methods were carried out on compounds 1 – 3 and 9 – 11 and showed reasonable agreement with the experimentally obtained structural parameters, that is, large HOMO–LUMO gaps, in accordance with the high stabilities of these complexes, and NMR chemical shifts that accurately reflected the experimentally observed resonances. All of the new compounds were characterized in solution by using mass spectrometry, IR spectroscopy, and 1H, 13C, and 11B NMR spectroscopy and their structural types were unequivocally established by crystallographic analysis of complexes 1 , 2 , 4 , 9 , and 10 .  相似文献   

7.
Interconversion of the molybdenum amido [(PhTpy)(PPh2Me)2Mo(NHtBuAr)][BArF24] (PhTpy=4′‐Ph‐2,2′,6′,2“‐terpyridine; tBuAr=4‐tert‐butyl‐C6H4; ArF24=(C6H3‐3,5‐(CF3)2)4) and imido [(PhTpy)(PPh2Me)2Mo(NtBuAr)][BArF24] complexes has been accomplished by proton‐coupled electron transfer. The 2,4,6‐tri‐tert‐butylphenoxyl radical was used as an oxidant and the non‐classical ammine complex [(PhTpy)(PPh2Me)2Mo(NH3)][BArF24] as the reductant. The N?H bond dissociation free energy (BDFE) of the amido N?H bond formed and cleaved in the sequence was experimentally bracketed between 45.8 and 52.3 kcal mol?1, in agreement with a DFT‐computed value of 48 kcal mol?1. The N?H BDFE in combination with electrochemical data eliminate proton transfer as the first step in the N?H bond‐forming sequence and favor initial electron transfer or concerted pathways.  相似文献   

8.
Reactions of aquapentachloroplatinic acid, (H3O)[PtCl5(H2O)]·2(18C6)·6H2O ( 1 ) (18C6 = 18‐crown‐6), and H2[PtCl6]·6H2O ( 2 ) with heterocyclic N, N donors (2, 2′‐bipyridine, bpy; 4, 4′‐di‐tert‐butyl‐2, 2′‐bipyridine, tBu2bpy; 1, 10‐phenanthroline, phen; 4, 7‐diphenyl‐1, 10‐phenanthroline, Ph2phen; 2, 2′‐bipyrimidine, bpym) afforded with ligand substitution platinum(IV) complexes [PtCl4(N∩N)] (N∩N = bpy, 3a ; tBu2bpy, 3b ; Ph2phen, 5 ; bpym, 7 ) and/or with protonation of N, N donor yielding (R2phenH)2[PtCl6] (R = H, 4a ; Ph, 4b ) and (bpymH)+ ( 8 ). With UV irradiation Ph2phen and bpym reacted with reduction yielding platinum(II) complexes [PtCl2(N∩N)] (N∩N = Ph2phen, 6 ; bpym, 9 ). Identities of all complexes were established by microanalysis as well as by NMR (1H, 13C, 195Pt) and IR spectroscopic investigations. Molecular structures of [PtCl4(bpym)]·MeOH ( 7 ) and [PtCl2(Ph2phen)] ( 6 ) were determined by X‐ray diffraction analyses. Differences in reactivity of bpy/bpym and phen ligands are discussed in terms of calculated structures of complexes [PtCl5(N∩N)] with monodentately bound N, N ligands (N∩N = bpy, 10a ; phen, 10b ; bpym, 10c ).  相似文献   

9.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

10.
New complexes {M(CO)4[Ph2P(S)P(S)Ph2]} (M = Cr, Mo and W), (1a)–(3a), [(1a), M = Cr; (2a), M = Mo; (3a), M = W] and {M2(CO)10[-Ph2P(S)P(S)Ph2]} (M = Cr, Mo, W), [(1b)–(3b) [(1b), M = Cr; (2b), M = Mo; (3b), M = W]] have been prepared by the photochemical reaction of M(CO)6 with Ph2P(S)P(S)Ph2 and characterized by elemental analyses, f.t.-i.r. and 31P-(1H)-n.m.r. spectroscopy and by FAB-mass spectrometry. The spectra suggest cis-chelate bidentate coordination of the ligand in {M(CO)4[Ph2P(S)P(S)Ph2]} and cis-bridging bidentate coordination of the ligand between two metals in (M = Cr, Mo and W).  相似文献   

11.
Dimeric chlorobridge complex [Rh(CO)2Cl]2 reacts with two equivalents of a series of unsymmetrical phosphine–phosphine monoselenide ligands, Ph2P(CH2)nP(Se)Ph2 {n = 1( a ), 2( b ), 3( c ), 4( d )}to form chelate complex [Rh(CO)Cl(P∩Se)] ( 1a ) {P∩Se = η2‐(P,Se) coordinated} and non‐chelate complexes [Rh(CO)2Cl(P~Se)] ( 1b–d ) {P~Se = η1‐(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to produce Rh(III) complexes of the type [Rh(COR)ClX(P∩Se)] {where R = ? C2H5 ( 2a ), X = I; R = ? CH2C6H5 ( 3a ), X = Cl}, [Rh(CO)ClI2(P∩Se)] ( 4a ), [Rh(CO)(COCH3)ClI(P~Se)] ( 5b–d ), [Rh(CO)(COH5)ClI‐(P~Se)] ( 6b–d ), [Rh(CO)(COCH2C6H5)Cl2(P~Se)] ( 7b–d ) and [Rh(CO)ClI2(P~Se)] ( 8b–d ). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH3I and C2H5I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d . The CH3I reacts with the different complexes at a rate 10–100 times faster than the C2H5I. The catalytic activity of complexes 1b–d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well‐known commercial species [Rh(CO)2I2]?. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Investigations of P–P Bond Formation Reactions in the Coordination Sphere of Transition Metals The reaction of [CpW(CO)3] with PCl3 leads to the transition metal substituted dichlorphosphines [{CpW(CO)3}PCl2] ( 1 ) and [{Cp(CO)3W}PCl2{WCl(CO)2Cp}] ( 2 ). The X‐ray structure of 2 reveals the Lewis acid/base character of this compound. Reactions of 1 and [Cr(CO)5Cp*PCl2], respectively, with metalates of the type [M(CO)3Cp′] (M′ = Mo, W; Cp′ = η5‐C5H4tBu) afford the cyclo‐P3 complexes [(η3‐P3)MCp′(CO)3] ( 3 ) (M = W) and ( 4 ) (M = Mo) and the compounds [(μ,η2‐P2{Cr(CO)5}2){Mo(CO)2Cp}2] ( 5 ) and [{μ3‐PW(CO)3Cp′}{W(CO)2Cp′}2] ( 6 ), respectively. Complex 6 possesses a planar homoleptic W3P moiety revealing delocalised multiple bonds within the W2P‐subunit. Reducing [(CO)5WPCl3] with magnesium leads to the formation of the phosphinidene complex [{(CO)5W}2PCl], whereas the reduction of [CpW(CO)3PCl2] ( 1 ) with magnesium yields the cyclo‐P3 complex 3 together with P4 phosphorus.  相似文献   

13.
Heterocubane Cluster Compounds (NEt4){Y=M[(μ3‐S)Re(CO)3]33‐E)} (M = W or Mo, Y = O or S, E = S or Se): Structures, Spectroscopy, and Electrochemistry Thiometallates [MS4]2– (M = Mo, W) or [WOS3]2– react with Re(CO)5(O3SCF3) and Li2E (E = S or Se) to yield the following compounds which were structurally characterized: (NEt4){S=W[(μ3‐S)Re(CO)3]33‐S)}(NEt4) ( 1 ), (NEt4){O/S=W[(μ3‐S)Re(CO)3](μ3‐S)}(NEt4) ( 1 / 2 ), (mixed crystals), (NEt4){S=W[(μ3‐S)Re(CO)3]33‐Se)}(NEt4) ( 3 ) and (NEt4){S=Mo[(μ3‐S)Re(CO)3]33‐S)}(NEt4) ( 4 ). The heterocubane anions 1 – 4 contain electron‐rich centers such as rhenium(I) or sulfide whereas molybdenum(VI) or tungsten(VI) act as acceptor sites. Accordingly, the absorption spectra show long‐wavelength metal‐to‐ligand charge transfer transitions, and cyclic voltammetry reveals a quasi‐reversible reduction of the clusters. Although both six‐coordinate rhenium(I) and four‐coordinate metal(VI) centers are present in the clusters there is no evidence for significant metal‐to‐metal charge transfer interaction.  相似文献   

14.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

15.
A series of new cyclopentadienyl molybdenum compounds bearing substituted phenanthroline ligands [(η5‐C5H4CH2C6H4X‐4)Mo(CO)2(N,NL)][BF4] (X = F, Cl, Br; N,NL = phen, 5‐NH2‐phen, 4,7‐Ph2‐phen) was prepared and characterized using infrared and NMR spectroscopies. Crystal structures of [(η5‐C5H4CH2C6H4F‐4)Mo(CO)2(NCMe)2][BF4], [(η5‐C5H4CH2C6H4X‐4)Mo(CO)2(phen)][BF4] (X = F, Cl, Br) and [(η5‐C5H4CH2C6H4Cl‐4)Mo(CO)2(4,7‐Ph2‐phen)][BF4]⋅(4,7‐Ph2‐phen)⋅HBF4 were determined using X‐ray diffraction analysis. Biological studies revealed a strong cytotoxic effect of the chelating ligands. Although the cytostatic effect of the halogen in the side chain of the cyclopentadienyl ring is negligible, it could be used for future post‐modification of these types of cytotoxic active molybdenum‐based compounds.  相似文献   

16.
The complexes trans-[(LP)2Cr(CO)4], cis-[(LP)2Mo(CO)4], trans-[(LM)2W(CO)4], [(LM)Mo(CO)5], cis-[(LM)Re(CO)4Br], [(LP)2Mo(CO)2Br2], [(LM)2Rh(CO)Cl] and trans-[(LM)2PdCl2] (LP = N-(diphenylphosphino)pyrrole; LM = N-(diphenylphosphin-2,5-dimethylpyrrole) have been prepared. Structural assignments were based upon IR data. LP resembles Ph3P in coordinating ability, while LM is a poorer ligand. The successive replacement of Ph in Ph3P by the pyrrolyl moiety causes a decrease in the donor properties of the phosphorus centre.  相似文献   

17.
Syntheses and Crystal Structures of [( t -Bu4Sb4)Fe(CO)4], [( t -Bu4Sb4)Mo(CO)5], and [( t -Bu3Sb4)Mo(η5-C5Me5)(CO)3] t-Bu4Sb4 reacts with Fe2(CO)9 to form [(t-Bu4Sb4)Fe(CO)4] ( 1 ). [(t-Bu4Sb4)Mo(CO)5] ( 2 ) is formed from (thf)Mo(CO)5 and t-Bu4Sb4. [(t-Bu3Sb4)Mo(η5-C5Me5)(CO)3] ( 3 ) is a product of the reaction of t-Bu4Sb4 with [(η5-C5Me5)Mo(CO)3]2. The crystal structures of 1–3 are reported.  相似文献   

18.
Salts containing bis‐phosphonio‐benzophospholide cations 2 a – d with an additional donor site in one of the phosphonio‐moieties were synthesized either via quaternisation of the Ph2P moiety in the neutral phosphonio‐benzophospholide 3 , or via ring‐closure of the functionalized bis‐phosphonium ion 6 . The Ph2P‐substituted cation 2 d formed chelate complexes [M(k2P,P′‐ 2 d )(CO)n]+ with M(CO)n = Ni(CO)2, Fe(CO)3, Cr(CO)4. In the latter case, competition between formation of the chelate and a complex [Cr(kP‐ 2 d )2(CO)4]2+ was observed, and interpreted as a consequence of antagonism between the stabilizing chelate effect and destabilizing ligand–ligand repulsions. The formation of stable PdII and PtII complexes of 2 d suggests that the chelate effect may also overcome the kinetic inhibition which so far prevented isolation of complexes of these metals with bis‐phosphonio‐benzophospholides. The newly synthesized ligands and complexes were characterized by spectroscopic data, and an X‐ray crystal structure analysis of 2 a [Br]. The reactivity of chelate complexes towards Ph3P indicates that the ring phosphorus atom is a weaker donor than the pendant Ph2P‐group.  相似文献   

19.
The reaction of 2‐(aminomethyl)aniline with 2 equivalents of PPh2Cl in the presence of Et3N, proceeds in CH2Cl2 to give N,N′‐bis(diphenylphosphino)‐2‐(aminomethyl)aniline 1 in good yield. Oxidation of 1 with aqueous H2O2, elemental sulfur or gray selenium gave the corresponding oxide, sulfide and selenide dichalcogenides [Ph2P(E)NHC6H4CH2NHP(E)Ph2] (E: O, 2a; S, 2b; Se, 2c), respectively. The reaction of [Ph2PNHC6H4CH2NHPPh2] with PdCl2(cod), PtCl2(cod) and [Cu(MeCN)4]PF6 gave the corresponding chelate complexes, PdCl21, PtCl21 and [Cu(1)2]PF6. The new compounds were fully characterized by NMR, IR spectroscopy and elemental analysis. The catalytic activity of the Pd(II) complex was tested in the Suzuki coupling and Heck reactions. The Pd(II) complex catalyzes the Suzuki coupling and Heck reaction, affording biphenyls and stilbenes respectively, in good yields. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The work reports the unexpected reaction of diphenyldibromo antimonates (III) with PtCl2 and cis‐[PtCl2(PPh3)2]. The reaction gives triphenylstibine containing PtII complexes viz. cis‐[PtBr2(SbPh3)2] ( 1 ), trans‐[[PtBr(Ph)(SbPh3)2] ( 2 ), [NMe4][PtBr3(SbPh3)] ( 3 ), and cis‐[PtBr2(PPh3)(SbPh3)] ( 4 ). All the complexes were characterised by elemental analyses, IR, Raman, 195Pt NMR, FAB mass spectroscopy and X‐ray crystallography. A plausible mechanism via the phenyl migration is proposed for the formation of these complexes. The average Pt–Br distance in 1 is 2.456(2) Å, in 2 2.496 Å(trans to Ph) while in 3 it is 2.476 Å (trans to Sb) implying a comparable trans influence of Ph3Sb and Ph3P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号