首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new hybrid fluorides, {[(C2H4NH3)3NH]4+}2 · (H3O)+ · [Al7F30]9– ( I ) and {[(C2H4NH3)3NH]4+}2 · [Al7F29]8– · (H2O)2 ( II ), are synthesized by solvothermal method. The structure determinations are performed by single crystal technique. The symmetry of both crystals is triclinic, sp. gr. P 1, I : a = 9.1111(6) Å, b = 10.2652(8) Å, c = 11.3302(8) Å, α = 110.746(7)°, β = 102.02(1)°, γ = 103.035(4)°, V = 915.9(3) Å3, Z = 1, R = 0.0489, Rw = 0.0654 for 2659 reflections, II : a = 8.438(2) Å, b = 10.125(2) Å, c = 10.853(4) Å, α = 106.56(2)°, β = 96.48(4)°, γ = 94.02(2)°, V = 877.9(9) Å3, Z = 1, R = 0.0327, Rw = 0.0411 for 3185 reflections. In I , seven corner‐sharing AlF6 octahedra form a [Al7F30]9– anion with pseudo 3 symmetry; such units are found in the pyrochlore structure. The aluminum atoms lie at the corners of two tetrahedra, linked by a common vertex. In II , similar heptamers are linked in order to build infinite (Al7F29)n8– chains oriented along a axis. In both compounds, organic moieties are tetra protonated and establish a system of hydrogen bonds N–H…F with four Al7F309– heptamers in I and with three inorganic chains in II .  相似文献   

2.
The first selenite chloride hydrates, Co(HSeO3)Cl · 3 H2O and Cu(HSeO3)Cl · 2 H2O, have been prepared from solution and characterised by single‐crystal X‐ray diffraction. The cobalt phase adopts an unusual “one‐dimensional” structure built up from vertex‐sharing pyramidal [HSeO3]2–, and octahedral [CoO2(H2O)4]2– and [CoO2(H2O)2Cl2]4– units. Inter‐chain bonding is by way of hydrogen bonds or van der Waals' interactions. The atomic arrangement of the copper phase involves [HSeO3]2– pyramids and Jahn‐Teller distorted [CuCl2(H2O)4] and [CuO4Cl2]8– octahedra, sharing vertices by way of Cu–O–Se and Cu–Cl–Cu bonds. Crystal data: Co(HSeO3)Cl · 3 H2O, Mr = 276.40, triclinic, space group P 1 (No. 2), a = 7.1657(5) Å, b = 7.3714(5) Å, c = 7.7064(5) Å, α = 64.934(1)°, β = 68.894(1)°, γ = 71.795(1)°, V = 337.78(7) Å3, Z = 2, R(F) = 0.036, wR(F) = 0.049. Cu(HSeO3)Cl · 2 H2O, Mr = 263.00, orthorhombic, space group Pnma (No. 62), a = 9.1488(3) Å, b = 17.8351(7) Å, c = 7.2293(3) Å, V = 1179.6(2) Å3, Z = 8, R(F) = 0.021, wR(F) = 0.024.  相似文献   

3.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

4.
The pale‐rose compound [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] · 4 H2O was prepared from adipic acid and CoCO3 in aqueous solution. The crystal structure (monoclinic, P21/n (no. 14), a = 8.061(1), b = 15.160(2), c = 9.708(2) Å, β = 90.939(7)°, Z = 2, R = 0.0405, wR2 = 0.0971) consists of adipate bridged supramolecular [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] layers and hydrogen bonded H2O molecules. The cobalt atoms Co1 and Co2 are distorted octahedrally coordinated by the O atoms of two bridging trans‐H2O molecules and four bidentate adipate anions (Co1) and by the O atoms of two bridging trans‐H2O molecules and four monodentate H2O molecules (Co2), respectively. Equatorial bonds: d(Co1–O) = 2.048 Å (2 × ), 2.060 Å (2 × ); d(Co2–O) = 2.057 Å (2 × ), 2.072 Å (2 × ). Axial bonds: d(Co1–O) = 2.235 Å (2 × ); d(Co2–O) = 2.156 Å (2 × ).  相似文献   

5.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

6.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

7.
Crystal Structure, Vibrational Spectrum, and Normal Coordinate Analysis of (PNP)2[ReFBr5] · H2O From the complex mixture obtained by oxidative ligand exchange of [ReBr6]2– with BrF3 [ReFBr5]2– has been isolated by ion exchange chromatography on diethylaminoethyl cellulose with 45% yield. The X-ray structure determination of (PNP)2[ReFBr5] · H2O (monoclinic, space group P21/c with a = 21.498(2), b = 13.314(3), c = 23.945(2) Å, β = 105.235(7)°, Z = 4) reveals a completely ordered anion sublattice resulting from the solvent water linked to the F ligand by a hydrogen bond (O–F: 2.758(6) Å). Due to the stronger trans influence of Br compared with F on the F · –Re–Br′ axis the Re–Br′ distance is shortened by 0.6% with regard to symmetrically coordinated axes. Based on the molecular parameters of the X-Ray determination the low temperature (10 K) IR and Raman spectrum of the (Me4N) salt is assigned by a normal coordinate analysis. The strengthening of the Re–Br′ bond due to the trans influence is indicated by an increase of the valence force constant fd(ReBr′) = 1.43 by 8% as compared with fd(ReBr) = 1.32 mdyn/Å of symmetric axes.  相似文献   

8.
Synthesis, Crystal Structure and Thermal Behaviour of Fluoroaluminates of the Composition (NH4)[M(H2O)6](AlF6) (M = Zn, Ni), [Zn(H2O)6][AlF5(H2O)], and (PyH)4[Al2F10] · 4 H2O Four new fluoroaluminates were obtained from fluoroacidic solutions of respective metal salts. The compounds of zinc ( I a : P21/c, a = 12.688(3), b = 6.554(1), c = 12.697(3) Å, β = 95.21(3)°, V = 1051.5(4) Å3, Z = 4) and nickel ( I b : P21/c, a = 12.685(3), b = 6.517(1), c = 12.664(2)Å, β = 94.55(2)°, V = 1043.6(4) Å3, Z = 4) are isotypic and represent a new structure type consisting of two different cations, NH4+ and [M(H2O)6]2+ and [AlF6]3–‐anions. [Zn(H2O)6][AlF5(H2O)] ( II : C2/m, a = 10.769(2), b = 13.747(3), c = 6.487(1)Å, β = 100.02(3)°, V = 945.7(3) Å3, Z = 4) is characterized by a H2O/F‐disorder in the [AlF5(H2O)]‐octahedra in two trans positions. In (PyH)4[Al2F10] · 4 H2O ( III : Cmc21, a = 15.035(3), b = 20.098(4), c = 12.750(4) Å, V = 5364(2) Å3, Z = 8), bioctahedral [Al2F10]4– anions have been found for the first time. The structures are described and discussed in comparison. The new compounds were used as precursors in order to obtain new AlF3‐phases. However, the thermal decomposition did not result in the formation of any new metastable AlF3‐phase. Instead, phase mixtures of either α‐AlF3 and β‐AlF3 or AlF3 and MF2 were obtained.  相似文献   

9.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

10.
Pyridine Adducts of the Gold Halides. 1. Synthesis and Structure of [Hpy][AuCl4], AuC13 · py, [AuCl2(py)2]Cl · H2O, and [AuCl2(py)2] [AuCl2] HAuCl4 reacts with pyridine in aqueous solution to form sparingly soluble [Hpy] [AuCl4]. This goes into solution as [AuCl2(py)2]+ on adding an excess of pyridine. [Hpy][AuCl4] decomposes above 195°C to HCl and AuCl3 · py, which can also be obtained from NaAuCl4 and pyridine. AuCl2 · py is formed by the reaction of AuCl2 · S(CH2C6H4)2 with pyridine in CHCl3. According to the vibrational spectrum the complex is built up of trans[AuCl2(py)2]+ cations and [AuCl2]? anions. The IR spectra of [Hpy][AuCl4], AuCl3 · py, and [AuCl2(py)2]Cl · H2O are discussed and assigned with respect to the crystal structures. [Hpy][AuCl4] crystallizes monoclinic in the space group C2/m. In its structure alternating layers of [Hpy]+ cations and [AuCl4]? anions are observed. The monoclinic AuCl3 · py (space group C2/c) consists of molecular complexes, wherein the gold atom is surrounded by three Cl atoms and one pyridine molecule in a square planar arrangement. The coordination is completed to an elongated octahedron by two more distant Cl atoms of neighbouring complexes. [AuCl2(py)2]Cl · H2O crystallizes in the monoclinic space group P21/n. It forms planar trans[AuCl2(py)2]+ cations, weakly coordinated with an additional Cl? ion and one H2O molecule. The Au? Cl bond lengths in the complexes under investigation are in the range of 227 to 229 pm, the Au? N distances are between 197 and 199 pm.  相似文献   

11.
The reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), suberic acid and Na2CO3 in a CH3CN–H2O solution yielded blue needle‐like crystals of [Cu2(phen)2(C8H12O4)2] · 3 H2O. The crystal structure (monoclinic, P21/n, a = 10.756(2) Å, b = 9.790(2) Å, c = 18.593(4) Å, β = 91.15(3)°, Z = 2, R = 0.043, wR2 = 0.1238) consists of suberato‐bridged [Cu2(phen)2(C8H12O4)4/2] layers and hydrogen bonded H2O molecules. The Cu atoms are coordinated by two N atoms from one bidentate chelating phen ligand and three carboxyl O atoms from different suberato ligands to form distorted [CuN2O3] square‐pyramids with one carboxyl O atom at the apical position (d(Cu–N) = 2.017(2), 2.043(3) Å, basal d(Cu–O) = 1.936(2), 1.951(2) Å and axial d(Cu–O) = 2.389(2) Å). Two [CuN2O3] square‐pyramids are condensed via a common O–O edge to a centrosymmetric [Cu2N4O4] dimer with the Cu…Cu distance of 3.406(1) Å indicating no interaction between Cu atoms. The resultant [Cu2N4O4] dimers are interlinked by the tridentate suberato ligands to form [Cu2(phen)2(C8H12O4)4/2] layers parallel to (101). These are assembled via π‐π stacking interactions into 3D network with H2O molecules in the tunnels extending in the [010] direction.  相似文献   

12.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

13.
The blue copper complex [Cu2(H2O)2(phen)2(OH)2][Cu2(phen)2(OH)2(CO3)2] · 10 H2O, which was prepared by reaction of 1,10‐phenanthroline monohydrate, CuCl2 · 2 H2O and Na2CO3 in the presence of succinic acid in CH3OH/H2O at pH = 13.0, crystallized in the triclinic space group P1 (no. 2) with cell dimensions: a = 9.515(1) Å, b = 12.039(1) Å, c = 12.412(2) Å, α = 70.16(1)°, β = 85.45(1)°, γ = 81.85(1)°, V = 1323.2(2) Å3, Z = 1. The crystal structure consists of dinuclear [Cu2(H2O)2(phen)2(OH)2]2+ complex cations, dinuclear [Cu2(phen)2(OH)2(CO3)2]2– complex anions and hydrogen bonded H2O molecules. In both the centrosymmetric dinuclear cation and anion, the Cu atoms are coordinated by two N atoms of one phen ligand, three O atoms of two μ‐OH groups and respectively one H2O molecule or one CO32– anion to complete distorted [CuN2O3] square‐pyramids with the H2O molecule or the CO32– anion at the apical position (equatorial d(Cu–O) = 1.939–1.961 Å, d(Cu–N) = 2.026–2.051 Å and axial d(Cu–O) = 2.194, 2.252 Å). Two adjacent [CuN2O3] square pyramids are condensed via two μ‐OH groups. Through the interionic hydrogen bonds, the dinuclear cations and anions are linked into 1D chains with parallel phen ligands on both sides. Interdigitation of phen ligands of neighboring 1D chains generated 2D layers, between which the hydrogen bonded water molecules are sandwiched.  相似文献   

14.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

15.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

16.
Triphenylphosphine Oxide (L) as Solvent and Ligand for Metallophthalocyaninates; Synthesis and Structure of [{Li(L)}2(μ‐pc)], [Li(L)4][Lipc] · Solvate, [Mg(L)pc] · Solvate, and [Zn(L)pc] · Solvate Triphenylphosphine oxide (L) coordinates to metallophthalocyaninates of Li, Mg and Zn at 300 °C. After purification and recrystallization in different solvents the very soluble and stable title compounds have been isolated and structurally characterized. In [{Li(L)}2(μ‐pc)], the Li atom lies in a distorted tetragonal pyramid of four isoindole N atoms (Ni) at a distance varying between 2.163(5) and 2.301(5) Å, and an O atom at 1.863(5) Å. In [Li(L)4] · [Lipc] · S, the Li atom of the cation coordinates four O atoms in a distorted tetrahedral arrangement at a distance varying from 1.887(9) to 1.953(9) Å, while the Li atom of the anion is in a quasi quadratic planar geometry of four Ni atoms (1.951(9)–1.977(9) Å) with the Li atom being displaced by 0.15 Å out of the (Ni)4 plane. The structural data of the distorted tetragonal pyramidale Mg(Ni)4O moiety in [Mg(L)pc] and the solvates [Mg(L)pc] · S (S = CH2Cl2, thf, 2py) generally do not vary significantly: Mg–Ni/2.035(3) –2.061(3) Å, Mg–O/1.955(2)–2.000(3) Å. The Mg atom is displaced by ca. 0.52 Å out of the (Ni)4 plane towards the O atom and the Mg–O–P moiety is bent (ca. 153°). [Zn(L)pc] · S crystallizes as a mixed crystal of equal parts of the conformer with a bent (155.1(3)°) and that of a quasi linear Zn–O–P moiety (174.2(3)°). Structural data of the Zn(Ni)4O moiety: (Zn–Ni)av: 2.024/2.013 Å; Zn–O: 2.050(4)/2.081(4) Å; Zn–(Ni)4: 0.40/0.33 Å. In the crystal, the Mg and Zn derivates aggregate in double layers forming pairs. The pc ligands in the triclinic complexes with good overlap of the neighbouring pc ligands are in a waving conformation, while those in the monoclinic complexes with weak overlap are in a concave conformation.  相似文献   

17.
Yellow crystals of [Mn(H2O)2(bpy)(C4H4O4)] · H2O were obtained by the reaction of 2,2′‐bipyridine, succinic acid, MnSO4 · H2O and Na2CO3 in an aqueous methanol solution. The crystal structure (monoclinic, P21/c (no. 14), a = 8.294(1), b = 11.556(1), c = 17.064(1)Å, β = 95.181(6)°, Z = 4, R = 0.0349, wR2 = 0.0887) consists of 1D supramolecular helix chains [Mn(H2O)2(bpy)(C4H4O4)2/2] and hydrogen bonded H2O molecules. The Mn atoms are octahedrally coordinated by two N atoms of one bidentate chelating bpy ligand and four O atoms of two H2O molecules and two bis‐monodentate bridging succinato ligands with d(Mn–O) = 2.139–2.237Å and d(Mn–N) = 2.268, 2.281 Å. The helix chains are held together by π‐π stacking interactions and hydrogen bonds.  相似文献   

18.
Structures and Thermal Behaviour of Alkali Metal Dihydrogen Phosphate HF Adducts, MH2PO4 · HF (M = K, Rb, Cs), with Hydrogen Bonds of the F–H…O Type Three HF adducts of alkali metal dihydrogen phosphates, MH2PO4 · HF (M = K, Rb, Cs), have been isolated from fluoroacidic solutions of MH2PO4. KH2PO4 · HF crystallizes monoclinic: P21/c, a = 6,459(2), b = 7,572(2), c = 9,457(3) Å, β = 101,35(3)°, V = 453,5(3) Å3, Z = 4. RbH2PO4 · HF and CsH2PO4 · HF are orthorhombic: Pna21, a = 9,055(3), b = 4,635(2), c = 11,908(4) Å, V = 499,8(3) Å3, Z = 4, and Pbca, a = 7,859(3), b = 9,519(4), c = 14,744(5) Å, V = 1102,5(7) Å3, Z = 8, respectively. The crystal structures of MH2PO4 · HF contain M+ cations, H2PO4 anions and neutral HF molecules. The H2PO4 anions are connected to layers by O–H…O hydrogen bonds (2,53–2,63 Å), whereas the HF molecules are attached to the layers via very short hydrogen bonds of the F‐H…O type (2,36–2,38 Å). The thermal decomposition of the adducts proceeds in three steps. The first step corresponds to the release of mainly HF and a smaller quantity of water. In the second and third steps, water evolution caused by condensation of dihydrogen phosphate is the dominating process whereas smaller amounts of HF are also released.  相似文献   

19.
Synthesis and Properties of trans -Di(fluoro)phthalocyaninatorhenate(III); Crystal Structure of the linear -Bis(triphenylphosphine)iminium Double Salt l (PNP) trans[Re(F)2pc2–] · 0.33l (PNP)F · 2 H2O trans-Bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II) reacts with (nBu4N)F · 3 H2O in acetone on air yielding trans-di(fluoro)phthalocyaninato(2–)rhenate(III), trans[Re(F)2pc2–]. The complex anion is precipitated as tetra(n-butyl)ammonium (nBu4N), or after addition of (PNP)HSO4 as linear-bis(triphenylphosphine)iminium (l(PNP)) salt. The latter crystallizes as a double salt of formula l(PNP)trans[Re(F)2pc2–] · 0.33l(PNP)F · 2 H2O in the cubic space group I23 (no. 197) with the cell parameter a = 21.836(2) Å; V = 10412(2) Å3; Z = 6. The Re atom is located in the centre of the (Niso)4 plane (Niso: isoindole-N atom) and coordinates axially two fluorine atoms in a mutual trans position. The Re–N and Re–F distance is 2.035(6) and 1.798(7) Å, respectively. According to the short Re–F distance the asymmetric Re–F stretching vibration is observed in the MIR spectrum at 746 cm–1. Obviously due to a large spin-orbit coupling, the complex salt with an electronic low-spin d4 ground state of ReIII (S = 1) is diamagnetic. Hence a sharp signal is observed at –126.1 ppm in the 19F NMR spectrum. The UV-VIS-NIR spectrum shows the typical π-π* transitions at 15000 (B), 29500 (Q) and 36900 cm–1 (N) and trip-multiplet transitions at 9500/10500 cm–1 and 13200/14100 cm–1.  相似文献   

20.
Synthesis, Structure, and Properties of Some Selenidostannates. II. [(C2H5)3NH]2Sn3Se7 · 0,25 H2O and [(C3H7)2NH2]4Sn4Se10 · 4 H2O The new selenidostannate hydrates [(C2H5)3NH]2Sn3Se7 · 0.25 H2O ( I ) and [(C3H7)2NH2]4Sn4Se10 · 4 H2O ( II ) were synthesized from an aqueous suspension of triethylammonium (tripropylammonium), tin, selenium I and in addition sulfur II at 130 °C. I crystallizes at ambient temperature in the monoclinic space group P21/n (a = 2069,3(4) pm, b = 1396,6(3) pm, c = 2342,8(5) pm, β = 114,68(3)°, Z = 8) and is characterized by two different anions, chains from edge‐sharing [Se3Se7]2– units and nets from trigonal SnSe5 bipyramids. II crystallizes at ambient temperature in the tetragonal space group I41/amd (a = 2150,0(3) pm, c = 1174,4(2) pm, Z = 4) and contains adamantane like [Sn4Se10]4–‐cages. The UV‐VIS spectra of the selenidostannates demonstrate that the absorption edges red shift as the dimensionality of the compounds is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号