首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New multi‐stimuli responsive cationic copolymers based on N‐acryloyl‐N′‐ethyl piperazine (AcrNEP) and N‐isopropylacrylamide (NIPAM) were prepared by thermal free‐radical solution polymerization in dioxane at 75 °C. The chemical composition of the copolymers was determined by 1H NMR spectroscopy and was found that the copolymers were slightly rich in NIPAM content than that of AcrNEP. The reactivity of the two monomers for the copolymerization reaction was evaluated by the extended Kelen‐Tüdös method. The distribution of monomer sequence in the copolymer chain was estimated using the terminal copolymerization model. The maximum tendency to alternation (~ 70%) was at 60 mol % of AcrNEP in the monomer feed. The copolymers were readily soluble in water at room temperature at all compositions and exhibited well‐defined lower critical solution temperature (LCST) phenomenon. The influence of various stimuli such as pH, temperature, simple inorganic salts, and surfactants on the LCST of the copolymers was studied in detail. Simple inorganic salts such as sodium chloride, sodium bromide, and sodium sulfate showed a salting‐out effect while sodium iodide showed a salting‐in effect. The salting‐out coefficient of the salts were calculated using the Sestchenow method, and the salting trend followed the order SO42? > Cl? > Br? > I?. The divalent salt was more effective in lowering the LCST than the monovalent salts. The cationic surfactant hexadecyl trimethylammonium bromide at concentrations above the critical micelle concentration caused a gradual increase in the LCST of the copolymer solutions. The intrinsic viscosity and light scattering behavior of the copolymers in water and in sodium chloride solutions were studied in detail. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1175–1183  相似文献   

2.
The multi‐thermo‐responsive block copolymer of poly[2‐(2‐methoxyethoxy)ethyl methacrylate]‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PMEO2MA‐b‐PVEA) displaying phase transition at both the lower critical solution temperature (LCST) and the upper critical solution temperature (UCST) in the alcohol/water mixture is synthesized by reversible addition‐fragmentation chain transfer polymerization. The poly[2‐(2‐methoxyethoxy)ethyl methacrylate] (PMEO2MA) block exhibits the UCST phase transition in alcohol and the LCST phase transition in water, while the poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PVEA) block shows the UCST phase transition in isopropanol and the LCST phase transition in the alcohol/water mixture. Both the polymer molecular weight and the co‐solvent/nonsolvent exert great influence on the LCST or UCST of the block copolymer. By adjusting the solvent character including the water content and the temperature, the block copolymer undergoes multiphase transition at LCST or UCST, and various block copolymer morphologies including inverted micelles, core‐corona micelles, and corona‐collapsed micelles are prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4399–4412  相似文献   

3.
Partial modification of the nonionic polymer poly(N‐2‐hydroxy‐propylmethacrylamide) by cinnamate produces stimuli‐responsive copolymers. The hydrophobic character of the cinnamate chromophore induces not only a lower critical solution temperature (LCST) in water, but renders additionally the polymers photoresponsive. For moderate cinnamate contents of 9 mol‐%, the photoisomerization of the trans‐cinnamate to cis‐cinnamate groups allows to switch the LCST by irradiation, whereas for higher cinnamate contents of 21 mol‐%, irradiation leads to intra‐ and intermolecular photocrosslinking.  相似文献   

4.
The effect of the molecular weight on the lower critical solution temperature (LCST) has been discussed extensively, where LCST increased with molar mass, decreased or kept constant, which leads to confusion. This work is focused on the preparation of poly(N‐isopropyl acrylamide) homopolymers, obtained in a wide molecular weights range. The LCST behavior is analyzed by calorimetry and rheology, and a deep study of molecular features is carried out for a better knowledge of the influence of various parameters involved on LCST. Finally, the molecular weight trend is observed, and its influence on LCST is compared with the effect of other parameters as polymer concentration in water, end‐group effect, and tacticity. It is observed that other parameters such tacticity and end‐group effect will affect the LCST behavior over molecular weight, if this one is not high enough. Furthermore, the study of the LCST ranges will be a useful tool for analyzing the molecular weight trends. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1386–1393  相似文献   

5.
The lower critical solution temperatures (LCSTs) for mass fractionated samples of poly(N‐isopropylacrylamide) (PNIPAM) were studied to determine the effect of polymer molecular weight on the LCST using a high throughput temperature gradient apparatus. PNIPAM fractions prepared by a conventional radical polymerization using azoisobutyronitrile (AIBN) as the initiator had LCSTs that were largely invariant with molecular weight or dispersity. Only slight deviations were noted with lower molecular weight samples. An 18‐kDa sample had a 0.6 °C higher LCST. A 56‐kDa sample had a 0.2 °C higher LCST. PNIPAM derivatives prepared with a triphenylmethyl (trityl) functionalized azo initiator were also prepared and mass fractionated. These samples' LCSTs were identical to those of PNIPAM samples prepared using AIBN initiation when higher molecular weight samples were compared. The trityl‐containing PNIPAM fractions' LCSTs varied when the molecular weight decreased below 100 kDa. Acidolysis of the trityl end groups provided a third set of PNIPAM derivatives whose LCST differed only with samples with Mw values < 60 kDa. These results show there is no effect of molecular weight on LCST until the degree of polymerization is such that end group structure becomes significant. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1492–1501, 2006  相似文献   

6.
N‐(3‐Methoxypropyl) acrylamide (MPAM) was polymerized by controlled radical polymerization (CRP) methods such as nitroxide‐mediated polymerization (NMP) and reversible addition–fragmentation chain‐transfer polymerization (RAFT). CRP was expected to yield well‐defined polymers with sharp lower critical solution temperature (LCST) transitions. NMP with the BlocBuilder (2‐([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino]oxy)‐2‐methylpropanoic acid) and SG1 ([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino] oxidanyl) initiating system revealed low yields and lack of control (high dispersity, ? ~ 1.5–1.6, and inhibition of chain growth). However, RAFT was far more effective, with linear number average molecular weight, , versus conversion, X, plots, low ? ~ 1.2–1.4 and the ability to form block copolymers using N,N‐diethylacrylamide (DEAAM) as the second monomer. Poly(MPAM) (with = 13.7–25.3 kg mol?1) thermoresponsive behavior in aqueous media revealed cloud point temperatures (CPT)s between 73 and 92 °C depending on solution concentration (ranging from 1 to 3 wt %). The and the molecular weight distribution were the key factors determining the CPT and the sharpness of the response, respectively. Poly(MPAM)‐b‐poly(DEAAM) block copolymer ( = 22.3 kg mol?1, ? = 1.41, molar composition FDEAAM = 0.38) revealed dual LCSTs with both segments revealing distinctive CPTs (at 75 and 37 °C for poly(MPAM) and poly(DEAAM) blocks, respectively) by both UV–Vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 59–67  相似文献   

7.
The solubility behavior of well‐defined poly(methyl acrylate) homopolymers as well as polystyrene‐block‐poly (methyl acrylate) block copolymers is discussed in this contribution. A solubility screening in ethanol–water solvent mixtures was performed in a high‐throughput manner using parallel turbidimetry revealing upper critical solution temperature behavior for poly(methyl acrylate). Moreover, the self‐assembly behavior of the block copolymers into micellar structures was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and cryo‐TEM revealing upper critical solution temperature switchability of the micelles, which was evaluated by DLS at different temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Linear and crosslinked polymers based on N‐isopropylacrylamide (NIPAAm) exhibit unusual thermal properties. Aqueous solutions of poly(N‐isopropylacrylamide) (PNIPAAm) phase‐separate upon heating above a lower critical solution temperature (LCST), whereas related hydrogels undergo a swelling–shrinking transition at an LCST. A linear copolymer made of NIPAAm/acryloxysuccinimide (98/2 mol/mol) and two hydrogels with different hydrophilicities were prepared. Fourier transform infrared (FTIR) spectroscopy was employed to determine the transition temperature and provide insights into the molecular details of the transition via probing of characteristic bands as a function of temperature. The FTIR spectroscopy method described here allowed the determination of the transition temperature for both the linear and crosslinked polymers. The transition temperatures for PNIPAAm and the gel resulting from the crosslinking with polylysine or N,N′‐methylenebisacrylamide (MBA) were in the same range, 30–35 °C. For the gels, the transition temperature increased with the hydrophilicity of the polymer matrix. The spectral changes observed at the LCST were similar for the free chains and the hydrogels, implying a similar molecular reorganization during the transition. The C H stretching region suggests that the N‐isopropyl groups and the backbone both underwent conformational changes and became more ordered upon heating above the LCST. An analysis of the amide I band suggests that the amide groups of the linear polymer were mainly involved in hydrogen bonding with water molecules below the LCST, the chain being flexible and disordered in a water solution. During the transition, around 20% of these intermolecular hydrogen bonds between the polymer and water were broken and replaced by intramolecular hydrogen bonds. Similar changes were also observed at the LCST of a gel crosslinked with MBA. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 907–915, 2000  相似文献   

9.
A series of vinyl polymers with L-valine and L-leucine residues, and related copolymers with N-isopropylacrylamide, were studied in aqueous solution at different temperatures (25, 30 and 35°C) and at two ionic strengths (0.01 M and 0.1 M NaCl). The protonation behavior revealed great differences between the polymers that were attributed to the size of the hydrophobic lateral group. Macromolecular shrinkage, occurring above a critical degree of protonation β, was related to hydrophobic forces outweighing the electrostatic repulsions between COO – groups. Low salt concentrations increased the electrostatic potential while high temperatures increased the hydrophobic interaction at lower β. The release of fewer water molecules structured around the polymer chain, responsible for the lower critical solution temperature phenomenon, revealed lower entropy changes at higher temperatures. The reversible configuration of graft polymer chains instantly responded to changes in pH and temperature, modifying the water filtration rates through the pores of cellulose membranes.  相似文献   

10.
Thermosensitive Poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by a free radical solution polymerization in three different ways. Normal hydrogels were prepared at room temperature and normal cryogels were prepared at subzero temperature. A cation surfactant dodecyl dimethyl benzyl ammonium bromide (DDBAB) was used during preparation of novel cryogels in freezing state. The response rates of normal hydrogels were very slow, whereas the rates of both normal and novel cryogels were very fast because of the macroporous structure of the cryogels. Mixed solvents which were composed of pure water and 1,4‐dioxane at various concentrations were used instead of pure water during the polymerization. The effects of the mixed solvent on morphology, swelling ratio, and deswelling/reswelling kinetics of the three kinds of hydrogels were investigated. For normal hydrogels and normal cryogels, there was no remarkable difference no matter the mixed solvent or pure water was used. However, the properties of the resulted novel cryogels were much different with the concentration of dioxane. Finally, the resulted hydrogels were used for concentrating emulsified paraffin. The different separation performance was attributed to the different structure of gel matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6594–6603, 2008  相似文献   

11.
Copolymerizations of methyl 2‐acetamidoacrylate (MAA) with methyl methacrylate (MMA) were carried out at 60 °C in chloroform. Copolymers containing MAA units in the range of 83–90 mol % exhibited a lower critical solution temperature (LCST), although homopolymers of MAA and MMA did not. The LCST of polymer solutions decreased with (1) an increase in the concentration of the copolymer, (2) a decrease in the MAA content in the copolymer, and (3) an increase in the concentration of salts added. The effectiveness of anionic species for reducing the LCST is NO < Cl? < SO < SO. Divalent anion is more effective for lowering the LCST than monovalent anion. However, there is no difference between cationic species in the salting‐out effect. Sodium carbonate and sodium phosphate had a salting‐in effect. Salting‐out coefficients were evaluated from the relationship between the logarithm of solubility of the copolymers and the salt concentration. Salting‐out coefficients of the copolymer depended not on the composition of the copolymers but on the salt added. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1945–1951, 2002  相似文献   

12.
Employing introductory (3‐21G RHF) and medium‐size (6‐311++G** B3LYP) ab initio calculations, complete conformational libraries, containing as many as 27 conformers, have been determined for diamide model systems incorporating the amino acids valine (Val) and phenylalanine (Phe). Conformational and energetic properties of these libraries were analyzed. For example, significant correlation was found between relative energies from 6‐311++G** B3LYP and single‐point B3LYP/6‐311++G**//RHF/3‐21G calculations. Comparison of populations of molecular conformations of hydrophobic aromatic and nonaromatic residues, based on their ab initiorelative energies, with their natural abundance indicates that, at least for the hydrophobic core of proteins, the conformations of Val (Ile, Leu) and Phe (Tyr, Trp) are controlled by the local energetic preferences of the respective amino acids. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 732–751, 2001  相似文献   

13.
Two bola‐amphiphilic small molecules, based on the diphenylanthracene skeleton structure, namely, BASM‐1 and its functionalized small molecule BASM‐2 , were designed and synthesized. The self‐assembly behavior and mechanism of these two molecules in aqueous solution were studied. The supramolecular two‐dimensional (2D) layer and the covalent 2D polymers were, respectively, prepared by these two molecules. What is more, the transverse size of the covalent 2D polymer laminates increased with the extension of the polymerization time. Atomic force microscopy results showed that both free‐standing single‐layer 2D polymers and few layer laminates with two to three molecular layers were obtained. So our work provides a simple and efficient method for directly preparing independent both supramolecular 2D polymers and covalent 2D polymers in liquid phase which is of great significance. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1748–1755  相似文献   

14.
The well‐defined, thermosensitive and biodegradable graft copolymers, poly(N‐isopropylacrylamide)‐b‐[2‐hydroxyethyl methacrylate‐poly(ε‐caprolactone)]n (PNIPAAm‐b‐(HEMA‐PCL)n) (n = 3 or 9), were synthesized by combining reversible addition‐fragmentation chain transfer polymerization and macromonomer method. The copolymers were able to self‐assemble into micelles in water with low critical micellar concentration and demonstrated temperature sensitivity with a lower critical solution temperature at around 36 °C. Transmission electron microscopy shows that the micelles exhibit a nanosized spherical morphology within a size range of 30–100 nm. The PNIPAAm‐b‐(HEMA‐PCL)3 copolymer exhibited biodegradation and low cytotoxicity. The paclitaxel‐loaded PNIPAAm‐b‐(HEMA‐PCL)3 micelles displayed thermosensitive controlled release behavior, which indicates potential as drug carriers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5354–5364, 2007  相似文献   

15.
The influence of the structure of surfactants on the Krafft temperature T k was studied for aqueous solutions of anionic surfactants containing the sulfate and sulfonate head groups, the hydrophilic (H) and lipophilic (L) fragments in amphiphilic anions, and various polar and C8—C18 hydrocarbon groups. The best statistical quality was obtained for the model with separate account of the effect of the H and L structural fragments on the T k value.  相似文献   

16.
17.
Hepatoma‐targeting micelles were successfully prepared by self‐assembly of galactose‐functionalized ribavirin‐containing amphiphilic random copolymer as novel drug delivery vehicles. The ribavirin‐containing random copolymer with galactose as the targeting ligand was facilely synthesized by combining enzymatic transesterification with radical polymerization and fully characterized by FTIR, NMR, and GPC. The formation of micelle‐type aggregates from the random copolymer was verified by UV–vis and fluorescence spectroscopy using pyrene as the guest molecule. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) experiments revealed that the micelles were well dispersed as spherical nanoparticles in water, whose hydrodynamic diameter was 217 ± 19 nm. Their biological recognition to fluorescein‐labeled peanut agglutinin investigated by confocal laser scanning microscopy (CLSM) proved the existence of hydrophilic galactose targeting moieties on the surface of micelles. Cell cytotoxicity tests and the inhibition experiment of galactose performed by MTT assay showed that the micelles had evident targeting function to hepG2 cells and the galactose moieties on the surface of micelles mediated cellar uptake of micelles. In vitro release studies indicated that ribavirin could be slowly released from the copolymer with pseudo zero‐order kinetics. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2734–2744, 2008  相似文献   

18.
Living cationic copolymerization of 2-isopropyl-2-oxazoline with 2-n-propyl-, 2-n-butyl-, and 2-n-nonyl-2-oxazoline results in gradient copolymers of defined composition, narrow molar mass distributions (PDI = 1.09–1.3), and defined overall degree of polymerization, set to n = 25 for all polymers. The introduction of monomer units of stronger amphiphilic character results in a systematic decrease of the lower critical solution temperature (LCST). The LCST modulation can be controlled by the choice of the comonomer as well as the comonomer ratio and was tuned in the temperature range from 46 to 9 °C. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
New thermosensitive polymers were synthesized by copolymerization between N‐vinylacetamide (NVA) and methyl acrylate whose homopolymers are soluble and insoluble in water, respectively. The lower critical solution temperature (LCST) of the obtained copolymers ranged between 59 and 83 °C, and the LCST increased with an increasing NVA content in the copolymers. The effectiveness of various salts addition on lowering the LCST of the copolymer solutions followed Hoffmeister series. NaCl and Na2SO4 addition linearly lowered the LCST with an increasing salts concentration, and slopes of the lines were almost constant regardless of the copolymer composition. The effectiveness of alcohols with various alkyl chain lengths on lowering the LCST did not follow the viscosity B coefficient values of the alcohols, which was probably the result of preferential adsorption of the alcohols to the copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2651–2658, 2004  相似文献   

20.
In the effort towards making nanoscale objects and assemblies feasible for use as functional materials, it is imperative to obtain control over the fundamental architectures and essential to understand what experimental conditions cause the manifestation of specific morphologies. A number of factors are known to influence the shape during the self‐assembly of amphiphilic block copolymers in solution, including solvent composition, polymer length, hydrophobicity versus hydrophilicity, as well as the addition of additives that can interact with segments of the block copolymers. This research, focused on developing an understanding of the micellar architectures accessed by the amphiphilic triblock copolymer of acrylic acid, methyl acrylate, and styrene, PAA85b‐PMA40b‐PS35, as a function of the stirring rate, together with other factors, when undergoing coassembly with ethylenediamine or diethylenetriamine in water/tetrahydrofuran solutions. The work demonstrates that the rate at which the polymer solution was stirred impacts the shape of the solution‐state assemblies formed by the triblock copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号