首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New linear polyesters containing sulfur in the main chain were obtained by melt polycondensation of diphenylmethane‐4,4′‐bis(methylthioacetic acid) (DBMTAA) or diphenylmethane‐4,4′‐bis(methythiopropionic acid) (DBMTPA) and diphenylmethane‐4,4′‐bis(methylthioethanol) (DBMTE) at equimolar ratio of reagents (polyesters E‐A and E‐P) as well as at 0.15 molar excess of diol (polyesters E‐AOH and E‐POH). The kinetics of these reactions was studied at 150, 160, and 170°C. Reaction rate constants (k2) and activation parameters (ΔG, ΔH, ΔS) from carboxyl group loss were determined using classical kinetic methods. E‐A and E‐P (n = 4400, 4600) were used for synthesis of new rubber‐like polyester‐sulfur compositions, by heating with elemental sulfur, whereas oligoesterols E‐AOH and E‐POH (M̄n = 2500, 2900) were converted to thermoplastic polyurethane elastomers by reaction with hexamethylene diisocyanate (HDI) or methylene bis(4‐phenyl isocyanate) (MDI). The structure of the polymers was determined by elemental analysis, FT‐IR and liquid or solid‐state 1H‐, 13C‐NMR spectroscopy, and X‐ray diffraction analysis. Thermal properties were measured by DTA, TGA, and DSC. Hardness and tensile properties of polyurethanes and polyester‐sulfur compositions were also determined. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 835–848, 1999  相似文献   

2.
The reactions of polylactic acid (PLA) oligomers and isocyanates (4,4′‐diphenylmethane diisocyanate and toluene diisocyanate) are reported. The effects of the reaction conditions, that is, the reaction time, reaction temperature, molar ratios, isocyanates, and catalyst, on the number‐average molecular weight (Mn ) are demonstrated. The optimum reaction conditions are determined by the synthesis of relatively high Mn PLA‐based linear polyurethanes. The structure of the polymer samples was investigated with dynamic light scattering, 1H NMR, IR, and matrix‐assisted laser‐desorption ionization time‐of‐flight mass spectroscopy (MALDI‐TOF MS). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2925–2933, 2000  相似文献   

3.
Polyoxazolidones having fluorenyl group were synthesized by polyaddition of 9,9‐diglycidyl fluorene with various diisocyanates. The polymer from 9,9‐diglycidyl fluorene and methylenediphenyl 4,4′‐diisocyanate was afforded in high yield although polydispersity of the polymer was found relatively broad. The IR spectrum of the obtained polymer showed two absorption in carbonyl region. One of them was assigned to the expected oxazolidone, while the other at 1710 cm?1 appeared due to a carbonyl group of the isocyanurate moieties produced by cyclotrimerization of isocyanate. It is assumed that the cyclotrimerization would cause the broad polydispersity caused by the branched structure formed by isocyanurate. The polymers obtained with three kinds of diisocyanates (methylenediphenyl 4,4'‐diisocyanate, 1,6‐hexamethylene diisocyanate, 1,4‐phenylene diisocyanate) showed high thermal stability, as their Td10 was depended on the structure of diisocyanate. All polymers had high transparency in a visible region. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1755–1760  相似文献   

4.
A new dialdehyde monomer, 4,4′‐(hexafluoroisopropylidine) bis(p‐phenoxy) benzaldehyde, was prepared; it led to a number of novel poly‐Schiff bases in reactions with different diamines, such as 4,4′‐diaminidiphenyl ether, 4,4′‐(isopropylidine) bis(p‐phenoxy) dianiline, 4,4′‐(hexafluoroisopropylidine) bis(p‐phenoxy) dianiline, and benzidine. The polymers were characterized with viscosity measurements, nitrogen analyses, and IR and 1H NMR spectroscopy. These poly‐Schiff bases showed good thermal stability up to 491 °C for 10% weight loss in thermogravimetric analysis under air and high glass‐transition temperatures up to 215 °C in differential scanning calorimetry. These polymers were soluble in a wide range of organic solvents, such as CHCl3, dimethylformamide (DMF), dimethyl sulfoxide, and 1‐methyl‐2‐pyrrolidon (NMP), and were insoluble in toluene and acetone. Thin films of these polymers cast from DMF exhibited tensile strengths up to 38 MPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 383–388, 2001  相似文献   

5.
In this study, we investigated the role of diisocyanate on the properties of polyurethane acrylate (PUA) prepolymers based on polypropylene oxide (n = 2000 g · mol−1). The diisocyanates studied were isophorone diisocyanate, 4‐4′dicyclohexylmethane diisocyanate, and toluene diisocyanate (pure 2,4‐TDI, pure 2,6‐TDI, and a TDI mixture, TDItech). The molecular structure of the diisocyanate had a major role on the course of the polycondensation and, more precisely, on the sequence length distribution of the final prepolymer. Moreover, the structural organization of the prepolymer also strongly depended on the nature of the diisocyanate. Two types of behaviors were particularly emphasized. On the one hand, the PUA synthesized from 2,4‐TDI displayed an enhanced intermixing between soft polyether segments and hard urethane groups, as revealed by the analysis of hydrogen bonding in Fourier transform infrared. Consecutively, the glass transition shifted to higher temperatures for these polymers. On the other hand, strong hard–hard inter‐urethane associations were observed in 2,6‐TDI‐based prepolymers; these led to microphase segregation between polyether chains and urethane groups, as revealed by optical microscopy. This inhomogeneous structure was thought to be responsible for the unusual rheological behavior of these PUA prepolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2750–2768, 2000  相似文献   

6.
A series of polyester urethanes (PEUs) comprising poly(lactic acid‐co‐polydiol) copolymers as a soft segment, 4,4′‐diphenylmethane diisocyanate (MDI) and 1,4‐butanediol (BDO) as a hard segment were systematically synthesized. Soft segments, which were block copolymers of L ‐lactide (LA) and polydiols such as poly(ethylene glycol) and poly(trimethylene ether glycol), were prepared via ring opening polymerization. Glass transition temperatures (Tg) of the obtained PEUs were found strongly dependent on properties of copolymer soft segments. By simply changing composition ratio, type and molecular weight of polydiols in the soft segment preparation step, Tg of PEU can be varied in the broad range of 0–57°C. The synthesized PEUs exhibited shape memory behavior at their transition temperatures. PEUs with hard segment ratio higher than 65 mole percent showed good shape recovery. These findings suggested that it is important to manipulate molecular structure of the copolymer soft segment for a desirable transition temperature and design optimal soft to hard segment ratio in PEU for good shape recovery. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Urethane reactions of cycloaliphatic and aromatic diisocyanates with hydroxy‐terminated fluoropolyethers (FPEs) of various molecular weights and structure, at NCO : OH = 2, have been studied by monitoring, by IR analysis, the rate of decrease in NCO absorbance at 2264–2268 cm−1. Different diisocyanates have been tested, among them the following: 4,4′‐dicyclohexylmethane diisocyanate (H12MDI); 5‐isocyanato‐1,3,3‐trimethylcyclohexylmethyl isocyanate or isophorone diisocyanate (IPDI); 2,4‐toluene diisocyanate (TDI). Ethyl acetate (EA), methyl isobutyl ketone (MIBK), and hexafluoroxylene (HFX) have been used as solvents in presence of dibutyltin dilaurate (DBTDL) or 1,4‐diazabicyclo[2.2.2]octane (DABCO) as catalysts. These reactions gave rise to NCO‐end‐capped FPE–oligourethanes. Preliminary solubility tests for HO‐terminated FPEs in various solvents made it possible to select proper candidates for carrying out reaction in homogeneous conditions at high concentrations of reagents (30–50% w/w). The second‐order kinetic mechanism was shown to be valid. Positive deviations from linearity for the second‐order kinetics around 40–80% conversion, found for most of the FPE diols, were attributed to the autocatalysis of the isocyanate–hydroxyl reaction by the arising urethane groups. Uncatalyzed reactions with cycloaliphatic diisocyanates are very slow at 40°C. The tertiary amine DABCO is a much less effective catalyst than DBTDL. FPEs having terminal OH groups separated from the perfluorinated main molecular chain by  (OCH2CH2)n segments (n = 1–2) are generally more reactive than FPEs with end  CH2OH groups. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 557–570, 1999  相似文献   

8.
New thermoplastic nonsegmented thiopolyurethanes were synthesized from the new low‐melting aliphatic‐aromatic thiodiols bis[4‐(2‐hydroxyethyl)thiomethylphenyl]methane, bis[4‐(3‐hydroxypropyl)thiomethylphenyl]methane, and bis[4‐(6‐hydroxyhexyl)thiomethylphenyl]methane and hexamethylene diisocyanate both by melt and solution polyaddition with dibutyltin dilaurate as a catalyst. All the thiodiols were prepared with high yields by the condensation reaction of bis(4‐mercaptomethylphenyl)methane with 2‐chloroethanol, 3‐chloro‐1‐propanol, or 6‐chloro‐1‐hexanol. The hard‐segment‐type polyurethanes obtained were plastic materials with partially crystalline structures. Polymerization in solution produced products with higher molecular weights (ηred = 0.97–1.24 dL/g) than polymerization in melt (ηred = 0.44–1.05 dL/g). The structures of all the polyurethanes were determined with elemental analysis, Fourier transform infrared, and X‐ray diffraction analysis. Thermal properties of the polymers obtained in solution were examined by differential scanning calorimetry and thermogravimetric analysis. Shore A/D hardness and tensile properties for all the polyurethanes were also determined. Of the two kinds, the polyurethanes obtained in solution possessed better tensile properties and showed yield stress (tensile strength) in a range of 27.8–30.0 MPa at an elongation of 17.4–25.1%. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1767–1773, 2000  相似文献   

9.
Hybrid linear‐dendritic ABA polymers, where A and B are dendritic and linear polymers, respectively, were synthesized in a single step via step‐growth polymerization of 4,4′‐difluorodiphenylsulfone and bisphenol A using arylether ketone dendrons of first and second generations (G1‐OH and G2‐OH) as monofunctional end‐cappers. These G1 and G2‐terminated poly(ether sulfone)s (G1‐PESs and G2‐PESs) were characterized by 1H NMR, SEC, DSC, TGA, melt rheology, and tensile tests. The comparison of the glass transition temperatures (Tgs) of these polymers with those of t‐butylphenoxy‐terminated polysulfones reveal that the G1‐ and G2‐PESs have lower Tgs at all molecular weights investigated. However, a plot of Tg versus 1/Mn shows that the difference between the three series becomes negligible at infinite molecular weight and agrees to the chain end free volume theory. The melt viscosities of G1‐PES and G2‐PES with high molecular weights do not show a Newtonian region and, in the high frequency region, their viscosities are lower than that of the control while the stress–strain properties are comparable to those of the control, suggesting that it is possible to reduce the high shear melt viscosity of a PES without affecting the stress–strain properties by introducing bulky dendritic terminal groups. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 958–969, 2008  相似文献   

10.
Poly(ethylene glycol) (PEG) with molecular weight (Mn) of 1000, 2000, 3000, and 4000 g/mol, four types of diisocyanate [hexamethylene diisocyanate (HDI), 4,4′-dicyclohexylmethane diisocyanate (H12MDI), isophorone diisocyanate (IPDI), and toluene diisocyanate (TDI)], two types of comonomers [acrylamide (AAm) and acrylic acid (AAc)] that comprised up to 60% of the total solid were used to prepare UV-curable PEG–based polyurethane (PU) acrylate hydrogel. The gels were evaluated in terms of mechanical properties, water content as a function of immersion time and pH, and X-ray diffraction profiles of dry and swollen films. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2703–2709, 1999  相似文献   

11.
Two series of new linear polyesters containing sulfur in the main chain were obtained by melt polycondensation of naphthalene-1,4-bis(methylthioacetic acid) (N-1,4-BMTAA) or naphthalene-1,5-bis(methylthioacetic acid) (N-1,5-BMTAA) with some aliphatic diols using a 0.05 molar excess of diol. Softening temperatures ranging from 55 to 130°C, reduced viscosities in the range of 0.15–0.39 dL/g, and low-molecular weights were their characteristic. The structure and thermal properties of all polyesters were examined by using elemental analysis, FT-IR and 1H-NMR spectroscopy, X-ray diffraction analysis, differential thermal analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorymetry (DSC). The kinetics of polyester formation by uncatalyzed melt polycondensation was studied in a model system: N-1,4-BMTAA or N-1,5-BMTAA and 2,2′-oxydiethanol (ODE) at 150, 160, and 170°C. Reaction rate constants (k3) and activation parameters (ΔG, ΔH, ΔS) from carboxyl group loss were determined using classical kinetic methods. Hydroxyl-terminated polyesters derived from 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were used for preparation of the polyurethanes by melt polyaddition with hexamethylene diisocyanate (HDI). They were characterized by reduced viscosity, FT-IR spectroscopy, X-ray diffraction analysis, TGA, DSC, polarizing microscope observation, and hardness and tensile properties. The resulting polyurethanes behave like high-elasticity thermoplastic elastomers, except the one derived from N-1,5-BMTAA and 1,6-hexanediol-based polyester. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2359–2369, 1998  相似文献   

12.
1,1‐Bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane (BAPPE) was prepared through nucleophilic substitution reaction of 1,1‐bis(4‐hydroxyphenyl)‐1‐phenylethane and p‐chloronitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Novel organosoluble polyimides and copolyimides were synthesized from BAPPE and six kinds of commercial dianhydrides, including pyromellitic dianhydride (PMDA, Ia ), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA, Ib ), 3,3′,4,4′‐ biphenyltetracarboxylic dianhydride (BPDA, Ic ), 4,4′‐oxydiphthalic anhydride (ODPA, Id ), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA, Ie ) and 4,4′‐hexafluoroisopropylidenediphthalic anhydride (6FDA, If ). Differing with the conventional polyimide process by thermal cyclodehydration of poly(amic acid), when polyimides were prepared by chemical cyclodehydration with N‐methyl‐2‐pyrrolidone as used solvent, resulted polymers showed good solubility. Additional, Ia,b were mixed respectively with the rest of dianhydrides (Ic–f) and BAPPE at certain molar ratios to prepare copolyimides with arbitrary solubilities. These polyimides and copolyimides were characterized by good mechanical properties together with good thermal stability. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2082–2090, 2000  相似文献   

13.
The synthesis of a new A2X‐type difluoride monomer, N‐2‐pyridyl‐4′,4″‐bis‐(4‐fluorobenzenesulfonyl)‐o‐terphenyl‐3,6‐dimethyl‐4,5‐dicarboxylic imide ( 3 ), is described. The monomer 3 was incorporated into a series of copoly(aryl ether sulfone)s by polymerization of 4,4′‐isopropylidenediphenol and 4,4′‐difluorophenylsulfone. The incorporation of monomer 3 had an observable effect on both the glass‐transition temperature of poly(aryl ether sulfone)s and the tendency for macrocyclic oligomers to form during polymerization. Replacement of the pyridyl imide group via a transimidization reaction with propargyl amine proceeded quantitatively and without polymer degradation. The acetylene containing copoly(aryl ether sulfone) could be crosslinked by simple thermal treatment, resulting in an increase in the glass‐transition temperature and solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 9–17, 2000  相似文献   

14.
High Tg amorphous copolyester thermoplastics were synthesized by incorporating 4,4′‐bibenzoate (4,4′BB) and 3,4′‐bibenzoate moieties into the polyester backbone via melt polycondensation. The high levels of crystallinity typically associated with 4,4′BB containing polyesters were suppressed through copolymerization of ethylene glycol, 1,4‐cyclohexane dimethanol, and neopentyl glycol (NPG) diols. NPG was shown to be highly effective in suppressing crystallization and was used to produce amorphous compositions with Tg’s as high as 129 °C. Diol ratios were determined by 1H NMR spectroscopy and molecular weights were assessed with inherent viscosity (ηinh). Thermogravimetric analysis showed single‐step weight losses in the range of 395 – 419 °C. Differential scanning calorimetry was used to determine melting points and glass transition temperatures over a wide range of copolyester compositions and identified amorphous compositions. Dynamic mechanical analysis confirmed Tg’s and was used to study β‐relaxations below the Tg. Rheological analysis revealed the effect of NPG structures on shear thinning and thermal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 579–587  相似文献   

15.
Three series of poly(pyromellitimide‐ester)s were synthesized from various N,N′‐bis(ω‐hydroxyalkyl)pyromellitimides (HAPMIs) by melt condensation with dicarboxylic acids, including terephthalic acid (TPA), 4,4′‐biphenyldicarboxylic acid (BPDA), and 4,4′‐azobenzenedicarboxylic acid (ABDA). Polymers were characterized by elemental analysis, solubility, inherent viscosity, spectra (IR, 1H‐NMR, 13C‐NMR), and X‐ray diffraction (XRD). Thermal stability and phase transition behaviour were evaluated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and hot‐stage optical polarized microscopy (HOPM). The d‐spacings, calculated from XRD data, showed an odd‐even effect with varying numbers of methylene spacers. Crystallinity of polymers decreased in the following order: azobenzene > biphenyl > phenyl polymers. Similarly, DSC‐obtained melting temperatures (Tm's) showed an odd‐even effect, and glass transition temperatures (Tg's) decreased with increasing numbers of methylene spacers. Thermal stability decreased as methylene chain length increased. Thermal stability of polymers occurred in the following order: phenyl > biphenyl > azobenzene polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1755–1761, 1999  相似文献   

16.
Copoly(ethylene terephthalate‐imide)s (PETIs) were synthesized by the melt copolycondensation of bis(2‐hydroxyethyl)terephthalate with a new imide monomer, N,N′‐bis[p‐(2‐hydroxyethoxycarbonyl)phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BHEI). The copolymers were characterized by intrinsic viscosity, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and thermogravimetric analysis techniques. Although their crystallinities decreased as the content of BHEI units increased, the glass‐transition temperatures (Tg) increased significantly. When 5 or 10 mol % BHEI units were incorporated into poly(ethylene terephthalate), Tg increased by 10 or 24 °C, respectively. The thermal stabilities of PETI copolymers were about the same as the thermal stability of PET, whereas the weight loss of PETIs decreased as the content of BHEI units increased. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 408–415, 2001  相似文献   

17.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Poly(phenylenevinylene)‐based conjugated polymers with azobenzene groups in the main chains were prepared by the Pd‐catalyzed coupling polymerization of divinylarenes with dihaloarenes. The Pd‐catalyzed coupling polymerization of 4,4′‐divinylazobenzene with dihaloarenes such as 1,3‐dibromobenzene, 1,4‐dibromo‐2,5‐dihexylbenzene, 4,4′‐dibromoazobenzene, and 4,4′‐diiodoazobenzene resulted in polymers with poor solubility. In contrast, soluble polymers containing azobenzene moieties in the main chains were attainable from divinylbenzenes with 4,4′‐dihaloazobenzenes if either or both of the monomers possessed hexyl groups on the aromatic rings. The number‐average molecular weight of the polymer exceeded 10,000 under optimized conditions, and the polymer showed a remarkably redshifted absorption in the visible region (456 nm). 1H NMR and IR spectra supported that the polymers having only trans‐geometry for the double bonds. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1057–1063, 2000  相似文献   

19.
A new approach to obtain imide‐containing elastic polymers (IEPs) via elastic and high‐molecular‐weight polyureas, which were prepared from α‐(4‐aminobenzoyl)‐ω‐[(4‐aminobenzoyl)oxy]‐poly(oxytetramethylene) and the conventional diisocyanates such as tolylene‐2,4‐diisocyanate(2,4‐TDI), tolylene‐2,6‐diisocyanate(2,6‐TDI), and 4,4′‐diphenylmethanediisocyanate (MDI), was investigated. IEP solutions were prepared in high yield by the reaction of the polyureas with pyromellitic dianhydride in N‐methyl‐2‐pyrrolidone (NMP) at 165°C for 3.7–5.2 h. IEPs were obtained by the thermal treatment at 200°C for 4 h in vacuo after NMP was evaporated from the resulting IEP solutions. We assumed a mechanism of the reaction via N‐acylurea from the identification of imide linkage and amid acid group in IEP solutions. NMR and FTIR analyses confirmed that IEPs were segmented polymers composed of imide hard segment and poly(tetramethylene oxide) (PTMO) soft segment. The dynamic mechanical and thermal analyses indicated that the IEPs prepared from 2,6‐TDI and MDI showed a glass‐transition temperature (Tg ) at about −60°C, corresponding to Tg of PTMO segment, and suggested that microphase‐separation between the imide segment and the PTMO segment occured in them. TGA studies indicated the 10% weight‐loss temperatures (T10) under air for IEPs were in the temperature range of 343–374°C. IEPs prepared from 2,6‐TDI and MDI showed excellent tensile properties and good solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 715–723, 2000  相似文献   

20.
l ‐Lactide (l ‐LA) was polymerized in the presence of N‐methyldiethanolamine as an initiator and Sn(Oct)2 as a catalyst to give hydroxy‐telechelic poly(l ‐lactide) (PLLA‐diol) bearing a tertiary amine group at the center of the polymer chain. Successive chain extension of the PLLA‐diol with hexamethylene diisocyanate afforded PLLA‐based poly(ester‐urethane)s (PEU) with equally spaced tertiary amine groups. Treatment of the PEU with iodomethane converted tertiary amine groups to quaternary ammonium groups to give cationic ionomers (PEU‐MeI). The thermal, mechanical, hydrophilic, and biodegradation properties of the obtained polymers were investigated. The thermal properties of the PEUs and the PEU‐MeIs were similar each other. The PEU‐MeIs exhibited higher tensile modulus than those of the starting PEUs. The contact angles of water on the PEU‐MeIs were lower than those of the PEUs with similar NMDA content indicating their higher hydrophilicity. In compost degradation tests, the PEU‐MeIs showed slower degradation than those of the PEUs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4423–4428  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号