首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolysis of 1,2‐bis(5,6‐benzo‐1‐methyl‐2‐chloro‐1,3,2‐diazaphosphorin‐4‐on‐3‐yl)ethane ( 1 ) and its 1,3‐propane derivative ( 2 ) with excess water led, without decomposition, to the formation of the bis‐phosphoryl compounds 3 and 4 . Reaction of 1 and 2 with bis(trimethylsiloxy)ethane formed the symmetrical macrocycles 5 and 6 , which could readily be oxidized by (H2N)2C(:O) · H2O2 or elemental sulfur, leading to the formation of the phosphoryl compounds 7 and 10 , and the thiophosphoryl derivatives 9 and 11 , respectively. The influence of the ring size on the reaction rate of the oxidation was investigated. For the sulfurization of 6 , the stepwise addition of sulfur to phosphorus was proved by NMR spectroscopy. All compounds exist as single conformers in common organic solvents such as toluene, diethyl ether, dichloromethane or chloroform. For compounds 7 (dichloromethane solvate) and 9 , single crystal X‐ray structure analyses were conducted; both diastereomeric molecules were shown to display RR/SS configuration. In both structures one short non‐classical hydrogen bond was observed.  相似文献   

2.
The reactions of 1,1′‐bis[Li(trimethylsilyl)amino]ferrocene ( 2a ) with selenium‐ or tellurium tetrahalides gave the 1,1′,3,3′‐tetrakis(trimethylsilyl)‐1,1′,3,3′‐tetraaza‐2‐selene‐ and 2‐tellura‐2,2′‐spirobi[3]ferrocenophanes 5 and 6 , respectively. The analogous reaction with tin dichloride afforded the corresponding 2‐stanna‐2,2′‐spirobi[3]ferrocenophane ( 9 ) rather than the expected stannylene 8 . The reaction of 2,2‐dichloro‐1,3‐bis(trimethylsilyl)‐1,3,2‐diazastanna‐[3]ferrocenophane ( 10 ) with the dilithio reagent 2b also gave the spirotin compound 9 , of which the molecular structure was determined by X‐ray analysis. The formation of the products and their solution‐state structures was deduced from multinuclear magnetic resonance spectroscopic studies (1H, 13C, 15N, 29Si, 77Se, 125Te, 119Sn NMR spectroscopy).  相似文献   

3.
Three bis‐acylamide compounds, N1,N4‐bis(pyridin‐4‐yl)‐cyclohexane‐1, 4‐dicarboxamide ( L1 ), 1, 1′‐(1, 3‐phenylenedicarbonyl‐)bis(1H‐1, 2, 3‐benzotriazole) ( L2 ), and N1,N4‐bis(1H‐1, 2, 4‐triazole) phthalamide ( L3 ) were synthesized. L1 , L2 , and a CuII complex based on L3 formulated as CuCl2( L3 )2(en)2 ( 1 ) (en = ethylenediamine) were structurally characterized by single‐crystal X‐ray diffraction for the first time. L1 , L2 , and L3 exhibit different photoluminescence properties.  相似文献   

4.
A room temperature reaction of zinc acetate, tributyl borate and N, N, N′N′‐tetramethylethylenediamine (tmen) in a mixture of water and 1‐butanol has given rise to a new bis‐(hexaborato)‐zincate, [(Me)2NH(CH2)2NH(Me)2][{Zn(B6O7(OH)6}2]·2H2O ( I ). The structure, determined by single crystal X‐ray diffraction, (P1, a = 8.3014(2), b = 9.2489(2), c = 10.442(2)Å, α = 107.71(3), β = 94.22(3), γ = 100.02(3)°, V = 749.6(3)Å3 = Z = 1, R1 = 0.0387, wR2 = 0.105), consists of anionic molecular Zn hexaborate units forming a herringbone arrangement, through strong hydrogen bond interactions, with the amine molecule situated between the chains. Compound I is the first bis‐(hexaborato)‐zincate, to our knowledge, that has been synthesized in the presence of an organic amine.  相似文献   

5.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

6.
The reaction of cadmium acetate in methanol with 1, 3‐bis(4‐nitrophenyl)triazene in THF in the presence of KOH yields K[Cd(O2NC6H4NNNC6H4NO2)3] in form of hexagonal prismatic, red crystals with the trigonal space group R3¯ and a = 12.229(2), c = 48.988(10) Å and Z = 6. In the anionic cadmium complexes, which are located along the threefold axis, the Cd atoms are coordinated in a trigonal prismatic arrangement by the atoms N(1) and N(3) of three triazenido ligands. The potassium cations are coordinated icosahedrally by oxygen atoms of each one nitro group of six neighbouring anionic complexes. The Cd‐N distances are 2.376(4) and 2.350(4) Å, and the K‐O distances are in the range of 2.833(6) to 3.365(6) Å.  相似文献   

7.
Treatment of Pd(PPh3)4 with phenylchlorothionoformate, PhOC(S)Cl, in dichloromethane at ?20 °C produces the phenyloxythiocarbonyl complex [Pd(PPh3)21‐C(S)OPh}(Cl)], 1 . The 31P{1H} NMR spectrum of 1 shows the dissociation of either the chloride or the triphenylphosphine ligand to form complex [Pd(PPh3)22‐SCOPh)][Cl], 2 or the dipalladium complex [Pd(PPh3)Cl]2(μ,η2‐SCOPh)2, 3 . Continuous stirring of the dichloromethane solution of 1 at room temperature for 4 h forms the dipalladinum complex [Pd(PPh3)Cl]2(μ,η2‐SCOPh)2, 3 as the final product. Respective reactions of 1 and Et2NCS2Na or dppa {bis(diphenylphosphino)amine} gives complex [Pd(PPh3){η1‐C(S)OPh}(η2‐S2CNEt2)], 4 or [Pd(PPh3){η1‐C(S)OPh}(η2‐dppa)][Cl], 5 . Complex 1 is determined by single‐crystal X‐ray diffraction and crystallized in the monoclinic space group P21 with Z = 4. The cell dimensions of 1 are as follows: a = 9.5613(1) Å, b = 33.6732(3) Å, c = 12.2979(1) Å.  相似文献   

8.
The first representatives of a novel type of cyclic bis‐phosphines, namely, 1‐aza‐3,7‐diphosphacyclooctanes ( 4 , 5 ), were synthesized by condensation of 1,3‐bis(arylphosphino)propanes ( 2 , 3 ; aryl = phenyl or mesityl), formaldehyde and 5‐aminoisophthalic acid. Only the meso isomers were obtained, in good to satisfactory yield. The cyclic bis‐phosphines readily form P,P chelate complexes ( 6 , 7 ) with [PtCl2(cod)] (cod = 1,5‐cyclooctadiene). The bisphosphine 4 and the corresponding complex 6 are soluble in water in the presence of two equivalents of alkali metal hydroxide. The molecular structures of 1‐(meta‐dicarboxyphenyl)‐3,7‐dimesityl‐1‐aza‐3,7‐diphosphacyclooctanes ( 5 ) and cis‐{P,P‐1‐(meta‐dicarboxyphenyl)‐3,7‐diphenyl‐1‐aza‐3,7‐diphosphacyclooctane}dichloroplatinum(II) ( 6 ) are reported.  相似文献   

9.
Pseudo‐ephedrine derived 2‐imino‐1,3‐thiazolidine 1 reacts with tris(diethylamino)phosphane by stepwise replacement of the diethylamino group to give the mono‐, bis‐ and tris(imino)phosphanes 2 , 3 and 4 , respectively, of which 4 could be isolated in pure state. The analogous reaction with diethylamino‐diphenylphosphane affords the imino‐diphenylphosphane 5 . The iminophosphanes react with sulfur or selenium to give the corresponding phosphorus(V) compounds. In contrast, the reaction of the iminophosphanes with oxygen is very slow; anhydrous trimethylamine N‐oxide reacts in the melt with the phosphanes to give the oxides 4(O) and 5(O) . The molecular structures of 4(O) (in mixture with 4 ), 4(Se) , 5(S) and 5(Se) were determined by X‐ray analysis. In all cases the ring‐sulfur and the phosphorus atoms are in cis‐positions at the C=N bonds. The analogous solution structures were determined by 1H, 13C, 15N, 31P and 77Se NMR spectroscopy. In the case of the compounds 5 , 5(O) , 5(S) and 5(Se) the isotope‐induced chemical shifts 1δ14/15N(31P) were determined, using INEPT‐HEED experiments.  相似文献   

10.
Two aliphatic ether Schiff base lanthanide complexes (Ln = Eu, Ce) with bis(3‐methoxysalicylidene)‐3‐oxapentane‐1,5‐diamine (Bod), were synthesized and characterized by physicochemical and spectroscopic methods. [Eu(Bod)(NO3)3] ( 1 ) is a discrete mononuclear species and [Ce(Bod)(NO3)3DMF] ( 2 ) exhibits an inorganic coordination polymer. In the two complexes, the metal ions both are ten‐coordinated and the geometric structure around the LnIII atom can be described as distorted hexadecahedron. Under excitation at room temperature, the red shift in the fluorescence band of the ligand in the complexes compared with that of the free ligand can be attributed to coordination of the rare earth ions to the ligand. Moreover, the antioxidant activities of the two complexes were investigated. The results demonstrated that the complexes have better scavenging activity than both the ligand and the usual antioxidants on the hydroxyl and superoxide radicals.  相似文献   

11.
The reaction of sodium benzoxasulfamate (nbs) with cadmium(II) and mercury(II) sulfate in aqueous solution yield the novel complexes [Cd(nbs)2(H2O)4] (1) and [Hg(nbs)2(H2O)3] ( 2 ), respectively. The complexes were characterized by elemental analyses, IR spectroscopy and X‐ray crystallography. Complex 1 is monomeric and has an octahedral arrangement in which the N‐donor nbs ligands occupy the axial positions, while the water oxygen atoms form the equatorial plane. Complex 2 is polymeric and shows a pentagonal bipyramidal arrangement achieved by the bridging of the HgN2O3 units through the weak interaction of the O atoms of the nitro group. The nbs ligands also occupy the axial positions of the pentagonal bipyramid, whereas three water and two nitro oxygen atoms constitute the pentagonal plane. The crystal structure packing in both crystals is achieved by the intermolecular hydrogen bonds involving water hydrogen atoms, nitro and sulfonyl oxygen atoms.  相似文献   

12.
13.
A novel coordination polymer {[Cd(BDAC)]2 · H2O}n ( 1 ) [HBDAC = (1′H‐[2, 2′]biimidazoly‐1‐yl)‐acetic acid] was synthesized under hydrothermal conditions and characterized by elemental analysis and single‐crystal X‐ray diffraction. Complex 1 crystallizes in the acentric orthorhombic space group Ccc2. The Cd1 atoms and BDAC2– ligands construct [Cd1(BDAC)] rhomboid grid (4, 4)‐topology layer motifs, whereas the Cd2 atoms and BDAC2– ligands form [Cd2(BDAC)] 1D coordination polymer ribbons. Furthermore, adjacent lay motifs are linked into 3D net structures by 1D coordination polymer ribbons with 4‐connected 3D trinodal {4282102}{4462}{43628}2 topology. The measurement of electric hysteresis loops indicated that complex 1 displays a ferroelectric characteristic.  相似文献   

14.
The reaction of the betain‐like compound O2C2(PPh3)2 ( 1 ) with [(cod)PtX2] in THF solution gives the salt‐like compounds (HC{PPh3}2)[(η3‐C8H11)PtX2] ( 3 , X = I; 4 , X = Cl) in about quantitative yields. The new η3‐bonded C8H11 ligand is the result of a proton transfer from the coordinated cod ligand to 1 with subsequent release of CO2. The X‐ray analysis of 3 shows the presence of two isomers in a 60:40 ratio, which differ in the bonding of the C8H11 ligand. 3 crystallizes in the triclinic space group with the unit cell dimensions a = 1091.7(1), b = 1141.5(1), c = 1649.4(2) pm; α = 80.34(1)°, β = 83.62(1)°, γ = 89.03(1)°, V = 2013.7(4)·106 pm3, Z = 2.  相似文献   

15.
The 119Sn cross polarization‐magic angle spinning NMR spectrum of bis[1,3‐bis(3‐oxapentamethylenecarbamoylthioacetato)‐1,1,3,3‐tetrabutyl‐1,3‐distannoxane], {[(C4H9)2SnO2CCH2SC(O)N(CH2CH2)2O]2O}2, which consists of two resonances of similar chemical shifts and symmetry (δiso = −152, −202 ppm; asymmetry, κ = 0.38), implies the existence of two five‐coordinate tin sites in the centrosymmetric dimer. The assignment has been corroborated by X‐ray diffraction analysis on the compound that has been crystallized from ethanol; the crystal structure shows two tin atoms in cis‐C2SnO3 trigonal‐bipyramidal coordination [C‐Sn‐C = 131.5(1), 131.3(2) °]. The analysis also reveals the presence of two lattice ethanol molecules that are hydrogen‐bonded to the dimer [OO = 2.779(5) Å]. When exposed to air, the distannoxane loses ethanol. The unsolvated distannoxane is more active than cis‐platin when screened against MCF‐7 (mammary cancer), EVSA‐T (mammary cancer), WiDr (colon cancer), IGROV (ovarian cancer), M19 MEL (melanoma), A498 (renal cancer) and H226 (lung cancer) cell lines. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

17.
Four metal‐organic coordination polymers [Cd(4‐bpcb)1.5Cl2(H2O)] ( 1 ), [Cd(4‐bpcb)0.5(mip)(H2O)2] · 3H2O ( 2 ), [Co(4‐bpcb)(oba)(H2O)2] ( 3 ), and [Ni(4‐bpcb)(oba)(H2O)2] ( 4 ) [4‐bpcb = N,N′‐bis(4‐pyridinecarboxamide)‐1, 4‐benzene, H2mip = 5‐methylisophthalic acid, and H2oba = 4, 4′‐oxybis(benzoic acid)] were synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, elemental analyses, IR spectroscopy, powder X‐ray diffraction, and TG analysis. In complex 1 , two Cl anions serve as bridges to connect two Cd‐(μ1‐4‐bpcb) subunits forming a dinuclear unit, which are further linked by μ2‐bridging 4‐bpcb to generate 1D zigzag chain. Complex 2 shows a 2D 63 network constructed by [Cd‐mip]n zigzag chains and μ2‐bridging 4‐bpcb ligands. Complexes 3 and 4 are isostructural 2D (4, 4) grid networks derived from [M‐oba]n (M = Co, Ni) zigzag chains and [M‐(4‐bpcb)]n linear chains. The 1D chains for 1 and the 2D networks for 2 – 4 are finally extended into 3D supramolecular architectures by hydrogen bonding interactions. The roles of dicarboxylates and central metal ions on the assembly and structures of the target compounds were discussed. Moreover, the thermal stabilities, photoluminescent properties, and photocatalytic activities of complexes 1 – 4 and the electrochemical properties of complexes 3 and 4 were investigated.  相似文献   

18.
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings.  相似文献   

19.
The reaction of solution 2,6‐pyridinedicarboxylic acid and 1,10‐phenanthroline ( 1 ) with CrCl3·6H2O led to the complex [Cr(phen)(pydc)(H2O)][Cr(pydc)2]·4H2O ( 2 ) (phen is 1,10‐phenanthroline and pydcH2 is 2,6‐pyridinedicarboxylic acid). 2 was characterized by elemental analysis, IR spectroscopy and single‐crystal structure determination. Crystal data for 2 at ?80 °C: triclinic, space group , a = 818.5(1), b = 1492.2(1), c = 1533.6(2) pm, α = 76.45(1)°, β = 84.22(1)°, γ = 77.99(1)°, Z = 2, R1 = 0.0416.  相似文献   

20.
The new oxonitridosilicates Ba4?xCaxSi6N10O have been synthesized by means of high‐temperature synthesis in a radio‐frequency furnace, starting from calcium, barium, silicon diimide and amorphous silicon dioxide. The maximum reaction temperature was at about 1450 °C. The solid solution series Ba4?xCaxSi6N10O with a phase width 1.81 ≤ x ≤ 2.95 was obtained. The crystal structure of Ba1.8Ca2.2Si6N10O was determined by X‐ray single‐crystal structure determination (P213, no. 198), a = 1040.2(1) pm, Z = 4, wR2 = 0.082). It can be described as a highly condensed network of corner‐sharing SiN4 and SiON3 tetrahedra, the voids of which are occupied by the alkaline earth ions. The structure is isotypic with that of BaEu(Ba0.5Eu0.5)YbSi6N11. In the 29Si solid‐state MAS‐NMR spectrum two isotropic resonances at ?50.0 and ?53.6 ppm were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号