首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The copolymerization of propylene with 1‐hexene, 1‐octene, 1‐decene, and 1‐dodecene was carried out with silica‐supported rac‐Me2Si(Ind)2ZrCl2 as a catalyst. The copolymerization activities of the homogeneous and supported catalysts and the microstructures of the resulting copolymers were compared. The activity of the supported catalyst was only one‐half to one‐eighth of that of the homogeneous catalyst, depending on the comonomer type. The supported catalyst copolymerized more comonomer into the polymer chain than the homogeneous catalyst at the same monomer feed ratio. Data of reactivity ratios showed that the depression in the activity of propylene instead of an enhancement in the activity of olefinic comonomer was responsible for this phenomenon. We also found that copolymerization with α‐olefins and supporting the metallocene on a carrier improved the stereoregularity and regioregularity of the copolymers. The melting temperature of all the copolymers decreased linearly with growing comonomer content, regardless of the comonomer type and catalyst system. Low mobility of the propagation chain in the supported catalyst was suggested as the reason for the different polymerization behaviors of the supported catalyst with the homogeneous system. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3294–3303, 2001  相似文献   

2.
The kinetics of propylene polymerization initiated by ansa‐metallocene diamide compound rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu)/methylaluminoxane (MAO) catalyst were investigated. The formation of cationic active species has been studied by the sequential NMR‐scale reactions of rac‐1 with MAO. The rac‐1 is first transformed to rac‐Me2Si(CMB)2ZrMe2 (rac‐2) through the alkylation mainly by free AlMe3 contained in MAO. The methylzirconium cations are then formed by the reaction of rac‐2 and MAO. Small amount of MAO ([Al]/[Zr] = 40) is enough to completely activate rac‐1 to afford methylzirconium cations that can polymerize propylene. In the lab‐scale polymerizations carried out at 30°C in toluene, the rate of polymerization (Rp) shows maximum at [Al]/[Zr] = 6,250. The Rp increases as the polymerization temperature (Tp) increases in the range of Tp between 10 and 70°C and as the catalyst concentration increases in the range between 21.9 and 109.6 μM. The activation energies evaluated by simple kinetic scheme are 4.7 kcal/mol during the acceleration period of polymerization and 12.2 kcal/mol for an overall reaction. The introduction of additional free AlMe3 before activating rac‐1 with MAO during polymerization deeply influences the polymerization behavior. The iPPs obtained at various conditions are characterized by high melting point (approximately 155°C), high stereoregularity (almost 100% [mmmm] pentad), low molecular weight (MW), and narrow molecular weight distribution (below 2.0). The fractionation results by various solvents show that iPPs produced at Tp below 30°C are compositionally homogeneous, but those obtained at Tp above 40°C are separated into many fractions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 737–750, 1999  相似文献   

3.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

4.
Ansa‐zirconocene diamide complex rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu) reacts with AlR3 (R = Me, Et, i‐Bu) and then with [CPh3]+[B(C6F5)4] (2) in toluene in order to in situ generate cationic alkylzirconium species. In the sequential NMR‐scale reactions of rac‐1 with various amount of AlMe3 and 2, rac‐1 transforms first to rac‐Me2Si(CMB)2Zr(Me)(NMe2) (rac‐3) and rac‐Me2Si(CMB)2ZrMe2 (rac‐4) by the reaction with AlMe3, and then to [rac‐Me2Si(CMB)2ZrMe]+ (5+) cation by the reaction of the resulting mixtures with 2. The activities of propylene polymerizations by rac‐1/Al(i‐Bu)3/2 system are dependent on the type and concentration of AlR3, resulting in the order of activity: rac‐1/Al(i‐Bu)3/2 > rac‐1/AlEt3/2 > rac‐1/MAO ≫ rac‐1/AlMe3/2 system. The bulkier isobutyl substituents make inactive catalytic species sterically unfavorable and give rise to more separated ion pairs so that the monomers can easily access to the active sites. The dependence of the maximum rate (Rp, max) on polymerization temperature (Tp) obtained by rac‐1/Al(i‐Bu)3/2 system follows Arrhenius relation, and the overall activation energy corresponds to 0.34 kcal/mol. The molecular weight (MW) of the resulting isotactic polypropylene (iPP) is not sensitive to Al(i‐Bu)3 concentration. The analysis of regiochemical errors of iPP shows that the chain transfer to Al(i‐Bu)3 is a minor chain termination. The 1,3‐addition of propylene monomer is the main source of regiochemical sequence and the [mr] sequence is negligible, as a result the meso pentad ([mmmm]) values of iPPs are very high ([mmmm] > 94%). These results can explain the fact that rac‐1/Al(i‐Bu)3/2 system keeps high activity over a wide range of [Al(i‐Bu)3]/[Zr] ratio between 32 and 3,260. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1071–1082, 1999  相似文献   

5.
This article discussed the root causes of the interesting differences between rac‐Et(Ind)2ZrCl2 and dimethyl (pyridyl‐amido)hafnium in catalyzing the propylene/ω‐halo‐α‐alkene copolymerization. Confirmed by density functional theory (DFT) calculations, the larger spacial opening around the active center of rac‐Et(Ind)2ZrCl2 contributes to the coordination and insertion of the monomers, resulting in the higher catalytic activity, while the narrow spacial opening around the Hf center retards the chain transfer reaction, leading to the much higher molecular weights (Mws) of the copolymers. The superior tolerability of Zr catalyst toward halogen groups might be attributed to that the dormant species generated from halogen coordination could be promptly reactivated. DFT calculations indicated the higher probability for the ω‐halo‐α‐alkene vinyl to coordinate with the Hf catalyst leading to the better ability to incorporate halogenated monomers. The high Mws and the outstanding isotacticity achieved by the Hf catalyst determined the higher melting temperature values of the copolymers with a certain amount of halogen groups. In addition, the chain transfer schemes were employed to analyze why the presence of halogenated monomers greatly decreased the Mws of the copolymers when rac‐Et(Ind)2ZrCl2 was used, while had no or little effect upon the Mws in the copolymerization by the Hf catalyst. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3421–3428  相似文献   

6.
A series of ethylene‐bridged C1‐symmetric ansa‐(3‐R‐indenyl)(fluorenyl) zirconocene complexes ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) incorporating a pendant arene substituent on the 3‐position of indenyl ring have been synthesized. The structure of complex 4 was further confirmed by X‐ray diffraction analysis. When activated with methylaluminoxane, four sterically less encumbered complexes 1 , 2 , 4 and 5 could catalyze the dimerization of propylene in toluene at 100°C to afford 2‐methyl‐1‐pentene with high selectivities up to 95.7–98.4% and moderate activities of 2.00 × 104 to 7.89 × 104 g (mol‐Zr?h)?1. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Copolymerization of olefins (ethylene and propylene) and 5‐hexen‐1‐ol pretreated with alkylaluminum was performed using [dimethysilylbis(9‐fluorenyl)]zirconium dichloride/methylaluminoxane as the catalyst. The copolymerization required extra addition of alkylaluminum to prevent deactivation of the catalyst when 5‐hexen‐1‐ol was pretreated with trimethylaluminum, whereas the triisobutylaluminum‐treated system did not require any addition of alkylaluminum. The molecular weight of the copolymer depended on the kind of alkylaluminum compound (masking reagent, additive, and cocatalyst). 13C NMR analysis proved that poly(ethylene‐co‐5‐hexen‐1‐ol) containing 50 mol % of 5‐hexen‐1‐ol acted as an alternating copolymer, whereas the poly(propylene‐co‐5‐hexen‐1‐ol) acted as a random copolymer. The surface property of the copolymers was simply evaluated by means of water drop contact angle measurement. It was found that the copolymers containing large amounts of 5‐hexen‐1‐ol units showed good hydrophilic properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 52–58, 2004  相似文献   

8.
Poly‐α‐olefins ranging from poly‐1‐pentene to poly‐1‐octadecene with narrow polydispersities were synthesized with (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2 and methylaluminoxane at polymerization temperatures (Tp 's) ranging from −15 to 180 °C and were characterized by gel permeation chromatography, NMR spectroscopy, and differential scanning calorimetry. The molar masses of the homopolymers obtained with (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2 were notably higher than those of poly‐α‐olefins synthesized with other zirconium‐based metallocenes under similar conditions. The temperature dependence of the molar mass distribution of the poly‐α‐olefins can be described by a common exponential decay function regardless of the investigated monomer. At Tp 's ranging from 20 to 100 °C, moderate isotacticity prevailed, but outside this temperature range, the polymers were less stereoregular. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2333–2339, 2000  相似文献   

9.
Propylene was copolymerized with the linear α‐olefins 1‐octene, 1‐decene, 1‐tetradecene, and 1‐octadecene. The metallocene catalyst Me2Si(2‐Me Benz[e]Ind)2ZrCl2, in conjunction with methylalumoxane as a cocatalyst, was used to synthesize the copolymers. The copolymers were characterized by 13C and 1H NMR with a solvent mixture of 1,2,4‐trichlorobenzene (TCB) and benzene‐d6 (9/1) at 100 °C. Thermal analyses were carried out to determine the melting and crystallization temperatures, whereas the molecular weights and molecular weight distributions were determined by gel permeation chromatography with TCB at 140 °C. Glass‐transition temperatures were determined with dynamic mechanical analysis. Relationships among the comonomer type and amount of incorporation and the melting/crystallization temperatures, glass‐transition temperature, crystallinity, and molecular weight were established. Moreover, up to 3.5% of the comonomer was incorporated, and there was a decrease in the molecular weight with increased comonomer content. Also, the melting and crystallization temperatures decreased as the comonomer content increased, but this relationship was independent of the comonomer type. In contrast, the values for the glass‐transition temperature also decreased with increased comonomer content, but the extent of the decrease was dependent on the comonomer type. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4110–4118, 2000  相似文献   

10.
This article reports the results of propylene/α‐olefin copolymerization and propylene/ethylene/α‐olefin terpolymerization using low concentrations (less than 5 mol %) of long α‐olefins such as 1‐octene, 1‐decene, and 1‐dodecene. Kinetics data are presented and discussed. The highest activity was found with the longest α‐olefin studied (1‐dodecene). A possible explanation is proposed for this and other characteristics of the polymers obtained. The effect of low‐ethylene contents (4 mol % in the gas phase) on the copolymerization of propylene/α‐olefins was also examined. The polymers synthesized were characterized by 13C NMR, gel permeation chromatography, DSC, Fourier transform infrared spectroscopy, and wide‐angle X‐ray scattering. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2005–2018, 2001  相似文献   

11.
Zirconocene dichloride (Cp2ZrCl2) in the presence of DMF was found to be a highly efficient catalyst for the synthesis of structurally diverse 2‐substituted quinozolin‐4(3H)‐ones by reaction of anthranilimide with a wide range of aryl aldehydes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, ethylene‐1‐hexene copolymers were synthesized with a tandem catalysis system that consisted of a new trimerization catalyst bis(2‐dodecylsulfanyl‐ethyl) amine‐CrCl3/MAO ( 1 /MAO) and copolymerization catalyst Et(Ind)2ZrCl2/MAO ( 2 /MAO) at atmosphere pressure. Catalyst 1 trimerized ethylene with high activity and excellent selectivity in the presence of a relatively low amount of MAO. Catalyst 2 incorporated the 1‐hexene content and produced ethylene‐1‐hexene copolymer from an ethylene‐only stock in the same reactor. Adjusting the Cr/Zr ratio and reaction temperature yielded various branching densities and thus melting temperatures. However, broad DSC curves were observed when low temperatures and/or high Cr/Zr ratios were employed due to an accumulation of 1‐hexene component and composition drifting during the copolymerization. It was found that a short pretrimerization period resulted in more homogeneous materials that gave unimodal DSC curves. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3562–3569, 2007  相似文献   

13.
The copolymerization of propylene/ethylene and terpolymerization of propylene/ethylene/α‐olefins using long‐chain α‐olefins such as 1‐octene and 1‐decene have been carried out using EtInd2ZrCl2//methylaluminoxane. High concentrations of propylene and low concentrations of α‐olefins (near 2 mol % of the total olefin concentration in the liquid phase) were used. The effect of the ethylene concentration in copolymerizations of propylene/α‐olefins was studied at medium ethylene contents (12 and 40 mol % in the gas phase). The polymers were molecularly characterized by gel permeation chromatography‐multiangle laser light scattering, wide‐angle X‐ray scattering, Fourier transform infrared spectroscopy, and DSC analyses. The shorter α‐olefin studied (1‐octene) produced the highest improvement of activity in terpolymerization at 12 mol % ethylene in the gas phase. About 2 mol % of 1‐octene in the liquid phase increases the activity and decreases the molecular weight of terpolymers with respect to corresponding copolymers, whereas the mp is increased by almost 30 °C. The “termonomer effect” is less evident when higher amounts of ethylene are used. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1136–1148, 2001  相似文献   

14.
Copolymerizations of propylene (P) with 1,5‐hexadiene (1,5‐HD) were carried out with isospecific rac‐1,2‐ethylenebis(1‐indenyl)Zr(NMe2)2 [rac‐(EBI)Zr(NMe2)2, 1] and syndiospecific isopropylidene(cyclopentadienyl)(9‐fluorenyl)ZrMe2 [i‐Pr(Cp)(Flu)ZrMe2, 2] compounds combined with Al(i‐Bu)3/[Ph3C][B(C6F5)4] as a cocatalyst system. Microstructures of poly(propylene‐co‐1,5‐HD) were determined by 1H NMR, 13C NMR, Raman spectroscopies and X‐ray powder diffraction. The isospecific 1/Al(i‐Bu)3/[Ph3C][B(C6F6)4] catalyst showed much higher polymerization rate than 2/Al(i‐Bu)3/[Ph3C][B(C6F6)4] system, however, the latter system showed higher incorporation of 1,5‐HD (rP = 8.85, r1,5‐HD = 0.274) than the former system (rP = 16.25, r1,5‐HD = 0.34). The high value of rP × r1,5‐HD far above 1 demonstrated that the copolymers obtained by both catalysts are somewhat blocky. The insertion of 1,5‐HD proceeded by enantiomorphic site control; however, the diastereoselectivity of the intramolecular cyclization reaction of 1,2‐inserted 1,5‐HD was independent of the stereospecificity of metallocene compounds, but dependent on the concentration of 1,5‐HD in the feed. The insertion of the monomers by enantiomorphic site control could also be realized by Raman spectroscopy and X‐ray powder diffraction of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1590–1598, 2000  相似文献   

15.
Ethene homopolymerizations and copolymerizations with 1‐hexene were catalyzed by methylaluminoxane‐activated (1,2,4‐Me3Cp)2ZrCl2. Investigations of the effects of various pressures on the homopolymerizations and copolymerizations and of the effects of different concentrations of trimethylaluminum (TMA) on the copolymerizations were performed. The characteristics of the ethene/1‐hexene copolymers agreed with expectations for changes in the ethene concentration: the incorporation of 1‐hexene decreased, whereas the melting point and crystallinity increased, with increasing pressure. The main termination mechanism of the homopolymerizations was β‐hydrogen transfer to the monomer. Termination mechanisms resulting in vinylidene unsaturations dominated in the copolymerizations. Standard termination mechanisms producing vinyl and trans‐vinylene unsaturations occurred in parallel and were not influenced by the ethene or TMA concentration. In addition, some chain transfer to TMA, producing saturated end groups after hydrolysis, occurred. Copolymerizations with different additions of TMA, with the other polymerization conditions kept constant, showed that the catalytic productivity [tons of polyethylene/(mol of Zr h)], the 1‐hexene incorporation, and the molecular weight (from gel permeation chromatography) were independent of the TMA concentration. Surprisingly, the vinylidene content decreased almost linearly with increasing TMA concentration. TMA might have coordinated to the catalytic site after 1‐hexene insertion and rotation to the β‐agostic state and, therefore, suppressed the standard termination reactions after 1‐hexene insertion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2584–2597, 2005  相似文献   

16.
The copolymerization of propylene and 3‐buten‐1‐ol protected with alkylaluminum [trimethylaluminum (TMA) or triisobutylaluminum] was conducted with an isospecific zirconocene catalyst [rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride], combined with methylaluminoxane as a cocatalyst, in the presence of additional TMA or H2 as the chain‐transfer reagent if necessary. The results indicated that end‐hydroxylated polypropylene was obtained in the presence of the chain‐transfer reagents because of the formation of dormant species after the insertion of the 3‐buten‐1‐ol‐based monomer followed by chain‐transfer reactions. The selectivity of the chain‐transfer reactions was influenced by the alkylaluminum protecting the comonomer and the catalyst structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5600–5607, 2004  相似文献   

17.
The effect of the copolymerization temperature and amount of comonomer in the copolymerization of ethylene with 1,3‐cyclopentadiene, dicyclopentadiene, and 4‐vinyl‐1‐cyclohexene and the rac‐Et[Ind]2ZrCl2–methylaluminoxane metallocene system was studied. The amount of comonomer present in the reaction media influenced the catalytic activity. Dicyclopentadiene was the most reactive comonomer among the cyclic dienes studied. In general, copolymers synthesized at 60 °C showed higher catalytic activities. Ethylene–dicyclopentadiene copolymers with high comonomer contents (>9%) did not show melting temperatures. 1,3‐Cyclopentadiene dimerized into dicyclopentadiene during the copolymerization, giving a terpolymer of ethylene, cyclopentadiene, and dicyclopentadiene. A complete characterization of the products was carried out with 1H NMR, 13C NMR, heteronuclear chemical shift correlation, differential scanning calorimetry, and gel permeation chromatography. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 471–485, 2002; DOI 10.1002/pola.10133  相似文献   

18.
The study of ethylene/1‐hexene copolymerization with the zirconocene catalyst, bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2)/methylaluminoxane (MAO), anchored on a MgCl2(THF)2 support was carried out. The influence of 1‐hexene concentration in the feed on catalyst productivity and comonomer reactivity as well as other properties was investigated. Additionally, the effect of support modification by the organoaluminum compounds [(MAO, trimethlaluminum (AlMe3), or diethylaluminum chloride (Et2AlCl)] on the behavior of the MgCl2(THF)2/Cp2ZrCl2/MAO catalyst in the copolymerization process and on the properties of the copolymers was explored. Immobilization of the Cp2ZrCl2 compound on the complex magnesium support MgCl2(THF)2 resulted in an effective system for the copolymerization of ethylene with 1‐hexene. The modification of the support as well as the kind of organoaluminum compound used as a modifier influenced the activity of the examined catalyst system. Additionally, the profitable influence of immobilization of the homogeneous catalyst as well as modification of the support applied on the molecular weight and molecular weight distribution of the copolymers was established. Finally, with the successive self‐nucleation/annealing procedure, the copolymers obtained over both homogeneous and heterogeneous metallocene catalysts were heterogeneous with respect to their chemical composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2512–2519, 2004  相似文献   

19.
The solid‐state structure and properties of homogeneous copolymers of propylene and 1‐octene were examined. Based on the combined observations from melting behavior, dynamic mechanical response, morphology with primarily atomic force microscopy, X‐ray diffraction, and tensile deformation, a classification scheme with four distinct categories is proposed. The homopolymer constitutes Type IV. It is characterized by large α‐positive spherulites with thick lamellae, good lamellar organization, and considerable secondary crystallization. Copolymers with up to 5 mol % octene, with at least 28 wt % crystallinity, are classified as Type III. Like the homopolymer, these copolymers crystallize as α‐positive spherulites, however, they have smaller spherulites and thinner lamellae. Both Type IV and Type III materials exhibit thermoplastic behavior characterized by yielding with formation of a sharp neck, cold drawing, strong strain hardening, and small recovery. Copolymers classified as Type II have between 5 and 10 mol % octene with crystallinity in the range of 15–28%. Type II materials have smaller impinging spherulites and thinner lamellae than Type III copolymers. Moreover, the spherulites are α‐negative, meaning that they exhibit very little crystallographic branching. These copolymers also contain predominately α‐phase crystallinity. The materials in this category have plastomeric behavior. They form a diffuse neck upon yielding and exhibit some recovery. Type I copolymers have more than 10 mol % octene and less than 15% crystallinity. They exhibit a granular texture with the granules often assembled into beaded strings that resemble poorly developed lamellae. Type I copolymers crystallize predominantly in the mesophase. Materials belonging to this class deform with a very diffuse neck and also exhibit some recovery. They are identified as elastoplastomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4357–4370, 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号