共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Mark J. MacLachlan Srebri Petrov Robert L. Bedard Ian Manners Geoffrey A. Ozin 《Angewandte Chemie (International ed. in English)》1998,37(15):2075-2079
Polycondensation of molecular adamantanoid [Ge4S10]4− precursors at a remarkably low temperature (50°C) affords the crystalline binary dichalcogenide δ-GeS2. Its crystal structure contains two interpenetrating cristobalite-like frameworks composed of adamantanoid [Ge4S6S4/2] building blocks. Rings containing 24 atoms form the largest pores of each network (shown on the right). 相似文献
9.
10.
11.
12.
13.
14.
The novel metalloid germanium cluster [Ge9(Hyp)2HypGe]– ( 1 ) was synthesized, exhibiting two different bulky groups [Hyp = Si(SiMe3)3; HypGe = Ge(SiMe3)3]. Further reaction of 1 with ZnCl2 gives the derivative [ZnGe18(Hyp)4(HypGe)2] ( 2 ) in good yield, showing that the substitution of Si(SiMe3)3 by Ge(SiMe3)3 within a metalloid Ge9R3– compound leads to a comparable reactivity. 1 and 2 are characterized by NMR spectroscopy, mass spectrometry ( 1 ) and single crystal structure analyses ( 2 ). 1 and 2 are the first metalloid germanium clusters bearing germyl groups. 相似文献
15.
16.
17.
18.
19.
The localized molecular orbitals and their energy levels for the clusters [Fe3S4(SH)3]2–, [(HS)3Fe3S4·Ni(PH3)]2–, [Mo3S4(OH2)9]4+, and [Mo3S4·Ni]4+ have been calculated by mean of the Edmiston-Ruedenberg energy localization technique under the CNDO/2 approximation in order to reveal the resemblance between [Fe3S4]+ and [Mo3S4]4+ in the geometrical configurations and the addition reactivities with heterometal atoms. It is shown that in these two cluster species with core {M
3(3-S)(-S)3} of similar structure (M = Mo, Fe) there exist three synergically connected three-centered two-electron (M-S-M) -bonds around the puckered six-membered {M3S3} rings on account of delocalization of a lone electron pair on each bridging S atom; these (M-S-M) -bonds are thus capable of forming cubane-like heterometal clusters with intruder metal atoms through the ( M) bonding. It is therefore seen that unlike the [Mo3S4]4+ with appreciable bonding between the Mo atoms, the extra d-electrons on the metal atoms in the [Fe3S4]+ cluster are localized on the Fe atoms, exhibiting an electronic structure significantly different from that of the [Mo3S4]4+ cluster. 相似文献
20.
Mehmet Somer Umut Aydemir Michael Baitinger Hans Georg von Schnering 《无机化学与普通化学杂志》2006,632(7):1281-1286
Vibrational spectra of the compounds M4E4 (M = K, Rb, Cs; E = Ge, Sn) and of β‐Na4Sn4 with the cluster anions [E4]4? were analysed based on the point group of isolated tetrahedranide units. The lower individual symmetry of the anions in the real structure being more patterned and complex primarily affects the spectra of the tetrahedro‐tetragermanides. ν3(F2) clearly splits both in Raman and IR and in the case of K4Sn4 only in IR. Rb4Sn4 and Cs4Sn4 exhibit very simple spectra with three bands in Raman and one band in IR. The breathing mode ν1(A1) for the quasi isolated [E4]4? cluster appears only in the Raman spectrum and is hardly influenced by the structural environment and by the nature of the alkali metal cations: ν1(A1) = 274 cm?1 ([Ge4]4?) and 183‐187 cm?1 ([Sn4]4?), respectively. The calculated valence force constants fd(E–E) are: [Ge4]4? : fd = 0.89 Ncm?1 ( K ), 0.87 Ncm?1 ( Rb ), 0.86 Ncm?1 ( Cs ) and [Sn4]4? : 0.67 Ncm?1 ( Na ), 0.66 Ncm?1 ( K ), 0.67 Ncm?1 ( Rb ), 0.68 Ncm?1 ( Cs ). Both, the frequencies and the force constants fit well into the range previously reported. 相似文献