首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents results concerning those sets of finite Borel measures μ on a locally compact Hausdorff space X with countable topological base which can be represented as the set of limit distributions of some sequence. They arc characterized by being nonanpty, closed, connected and containing only measures μ with μ(X) = 1 (if X is compact) or 0 ≤ μ(X) ≤ 1 (if X is not compact). Any set with this properties can be obtained as the set of limit distributions of a sequence even by rearranging an arbitrarily given sequence which is dense in the sense that the set of accumulation points is the whole space X. The typical case (in the sense of Baire categories) is that a sequence takes as limit distributions all possible measures of this kind. This gives new aspects for the recent theory of maldistribukd sequences.  相似文献   

2.
Let {(Xi, Ti): iI } be a family of compact spaces and let X be their Tychonoff product. ??(X) denotes the family of all basic non‐trivial closed subsets of X and ??R(X) denotes the family of all closed subsets H = V × ΠXi of X, where V is a non‐trivial closed subset of ΠXi and QH is a finite non‐empty subset of I. We show: (i) Every filterbase ?? ? ??R(X) extends to a ??R(X)‐ultrafilter ? if and only if every family H ? ??(X) with the finite intersection property (fip for abbreviation) extends to a maximal ??(X) family F with the fip. (ii) The proposition “if every filterbase ?? ? ??R(X) extends to a ??R(X)‐ultrafilter ?, then X is compact” is not provable in ZF. (iii) The statement “for every family {(Xi, Ti): iI } of compact spaces, every filterbase ?? ? ??R(Y), Y = ΠiIYi, extends to a ??R(Y)‐ultrafilter ?” is equivalent to Tychonoff's compactness theorem. (iv) The statement “for every family {(Xi, Ti): iω } of compact spaces, every countable filterbase ?? ? ??R(X), X = ΠiωXi, extends to a ??R(X)‐ultrafilter ?” is equivalent to Tychonoff's compactness theorem restricted to countable families. (v) The countable Axiom of Choice is equivalent to the proposition “for every family {(Xi, Ti): iω } of compact topological spaces, every countable family ?? ? ??(X) with the fip extends to a maximal ??(X) family ? with the fip” (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
It is well known that, in a topological space, the open sets can be characterized using ?lter convergence. In ZF (Zermelo‐Fraenkel set theory without the Axiom of Choice), we cannot replace filters by ultrafilters. It is proven that the ultra?lter convergence determines the open sets for every topological space if and only if the Ultrafilter Theorem holds. More, we can also prove that the Ultra?lter Theorem is equivalent to the fact that uX = kX for every topological space X, where k is the usual Kuratowski closure operator and u is the Ultra?lter Closure with uX (A):= {xX: (? U ultrafilter in X)[U converges to x and AU ]}. However, it is possible to built a topological space X for which uXkX, but the open sets are characterized by the ultra?lter convergence. To do so, it is proved that if every set has a free ultra?lter, then the Axiom of Countable Choice holds for families of non‐empty finite sets. It is also investigated under which set theoretic conditions the equality u = k is true in some subclasses of topological spaces, such as metric spaces, second countable T0‐spaces or {?} (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A space X is called C-closed if every countably compact subset of X is closed in X. We study the properties of C-closed spaces. Among other results, it is shown that countably compact C-closed spaces have countable tightness and under Martin's Axiom or 2ω0<2ω1, C-closed is equivalent to sequential for compact Hausdorff spaces. Furthermore, every hereditarily quasi-k Hausdorff space is Fréchet-Urysohn, which generalizes a theorem of Arhangel'sk in [4]. Also every hereditarily q-space is hereditarily of pointwise countable type and contains an open dense first countable subspace.  相似文献   

5.
A packing (resp. covering) ? of a normed space X consisting of unit balls is called completely saturated (resp. completely reduced) if no finite set of its members can be replaced by a more numerous (resp. less numerous) set of unit balls of X without losing the packing property (resp. covering property) of ?. We show that a normed space X admits completely saturated packings with disjoint closed unit balls as well as completely reduced coverings with open unit balls, provided that there exists a tiling of X with unit balls. Completely reduced coverings by open balls are of interest in the context of an approximation theory for continuous real‐valued functions that rests on so‐called controllable coverings of compact metric spaces. The close relation between controllable coverings and completely reduced coverings allows an extension of the approximation theory to non‐compact spaces. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We show that the statement (K12) “separable, countably compact, regular spaces are Baire” is deducible from a strictly weaker form than AC, namely, CAC(?) (the axiom of choice for countable families of non‐empty subsets of the real line ?). We also find some characterizations of the axiom of dependent choices.  相似文献   

7.
Let T be a compact disjointness preserving linear operator from C0(X) into C0(Y), where X and Y are locally compact Hausdorff spaces. We show that T can be represented as a norm convergent countable sum of disjoint rank one operators. More precisely, T = Σn δ ?hn for a (possibly finite) sequence {xn }n of distinct points in X and a norm null sequence {hn }n of mutually disjoint functions in C0(Y). Moreover, we develop a graph theoretic method to describe the spectrum of such an operator (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
It is shown that for compact metric spaces (X, d) the following statements are pairwise equivalent: “X is Loeb”, “X is separable”, “X has a we ordered dense subset”, “X is second countable”, and “X has a dense set G = ∪{Gn : nω}, ∣Gn∣ < ω, with limn→∞ diam (G n) = 0”. Further, it is shown that the statement: “Compact metric spaces are weakly Loeb” is not provable in ZF0 , the Zermelo‐Fraenkel set theory without the axiom of regularity, and that the countable axiom of choice for families of finite sets CACfin does not imply the statement “Compact metric spaces are separable”.  相似文献   

9.
We introduce a new cardinal invariant, core of a space, defined for any locally compact Hausdorff space X and denoted by cor(X). Locally compact spaces of countable core generalize locally compact σ-compact spaces in a way that is slightly exotic, but still quite natural. We show in Section 1 that under a broad range of conditions locally compact spaces of countable core must be σ-compact. In particular, normal locally compact spaces of countable core and realcompact locally compact spaces of countable core are σ-compact. Perfect mappings preserve the class of spaces of countable core in both directions (Section 2). The Alexandroff compactification aX is weakly first countable at the Alexandroff point a if and only if cor(X)=ω (Section 3). Two examples of non-σ-compact locally compact spaces of countable core are discussed in Section 3. We also extend the well-known theorem of Alexandroff and Urysohn on the cardinality of perfectly normal compacta to compacta satisfying a weak version of perfect normality. Several open problems are formulated.  相似文献   

10.
For a Hausdorff space X, let F be the hyperspace of all closed subsets of X and H a sublattice of F. Following Nogura and Shakhmatov, X is said to be H-trivial if the upper Kuratowski topology and the co-compact topology coincide on H. F-trivial spaces are the consonant spaces first introduced and studied by Dolecki, Greco and Lechicki. In this paper, we deal with K-trivial spaces and Fin-trivial space, where K and Fin are respectively the lattices of compact and of finite subsets of X. It is proved that if Ck(X) is a Baire space or more generally if X has ‘the moving off property’ of Gruenhage and Ma, then X is K-trivial. If X is countable, then Cp(X) is Baire if and only if X is Fin-trivial and all compact subsets of X are finite. As for consonant spaces, it turns out that every regular K-trivial space is a Prohorov space. This result remains true for any regular Fin-trivial space in which all compact subsets are scattered. It follows that every regular first countable space without isolated points, all compact subsets of which are countable, is Fin-nontrivial. Examples of K-trivial non-consonant spaces, of Fin-trivial K-nontrivial spaces and of countably compact Prohorov Fin-nontrivial spaces, are given. In particular, we show that all (generalized) Fréchet–Urysohn fans are K-trivial, answering a question by Nogura and Shakhmatov. Finally, we describe an example of a continuous open compact-covering mapping f :XY, where X is Prohorov and Y is not Prohorov, answering a long-standing question by Topsøe.  相似文献   

11.
In the category Haus of Hausdorff spaces the only injectives are the one-point spaces. Even though every Hausdorff spaceX has a maximal essential extension,X fails to have an injective hull, providedX has more than one point. A non-empty Hausdorff space has a proper essential extension if and only ifX is locally H-closed but not H-closed. In this case,X has (up to isomorphism) precisely one proper essential extension: the Obreanu-Porter extension (being simultaneously its maximal essential extension and its minimal H-closed extension). Completely parallel results hold for the categories SReg, Reg, and Tych of semi-regular, regular, and completely regular spaces respectively. In particular, the Alexandroff compactifications of locally compact, non-compact Hausdorff spaces are characterized categorically as the proper essential extensions of non-empty spaces in Tych (resp. Reg).Dedicated to my friend Nico Pumplün on his sixtieth birthday  相似文献   

12.
S. Dolecki, G. Greco and A. Lechicki call a space X consonant if the co-compact topology and the upper Kuratowski topology on the set of closed subsets of X coincide. We call a space X hyperconsonant if Fell's topology and the (Kuratowski) convergence topology coincide. Recently, we proved that a first countable, locally paracompact, T 3-space is hyperconsonant if and only if the space possesses at most one point without a compact neighbourhood, extending the same result of D. Fremlin obtained for metrizable spaces. In this paper, we pursue the study of hyperconsonance within the framework of point spaces (countable T 1-spaces with exactly one accumulation point) and we compare consonance and hyperconsonance in such spaces. In particular, we answer a question of T. Nogura and D. Shakhmatov: does there exist a nonconsonant point space? We provide a Fréchet, -point space which is not consonant. Moreover, this example proves that the consonance is not preserved by continuous closed compact-covering maps of separable complete metrizable spaces onto Hausdorff spaces.  相似文献   

13.
By using Bernstein‐type inequality we define analogs of spaces of entire functions of exponential type in Lp (X), 1 ≤ p ≤ ∞, where X is a symmetric space of non‐compact. We give estimates of Lp ‐norms, 1 ≤ p ≤ ∞, of such functions (the Nikolskii‐type inequalities) and also prove the Lp ‐Plancherel–Polya inequalities which imply that our functions of exponential type are uniquely determined by their inner products with certain countable sets of measures with compact supports and can be reconstructed from such sets of “measurements” in a stable way (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In the first two sections, we study when a σ-compact space can be covered by a point-finite family of compacta. The main result in this direction concerns topological vector spaces. Theorem 2.4 implies that if such a space L admits a countable point-finite cover by compacta, then L has a countable network. It follows that if f is a continuous mapping of a σ-compact locally compact space X onto a topological vector space L, and fibers of f are compact, then L is a σ-compact space with a countable network (Theorem 2.10). Therefore, certain σ-compact topological vector spaces do not have a stronger σ-compact locally compact topology.In the last, third section, we establish a result going in the orthogonal direction: if a compact Hausdorff space X is the union of two subspaces which are homeomorphic to topological vector spaces, then X is metrizable (Corollary 3.2).  相似文献   

15.
In this work we expand upon the theory of open ultrafilters in the setting of regular spaces. In [E. van Douwen, Remote points, Dissertationes Math. (Rozprawy Mat.) 188 (1981) 1-45], van Douwen showed that if X is a non-feebly compact Tychonoff space with a countable π-base, then βX has a remote point. We develop a related result for the class of regular spaces which shows that in a non-feebly compact regular space X with a countable π-base, there exists a free open ultrafilter on X that is also a regular filter.Of central importance is a result of Mooney [D.D. Mooney, H-bounded sets, Topology Proc. 18 (1993) 195-207] that characterizes open ultrafilters as open filters that are saturated and disjoint-prime. Smirnov [J.M. Smirnov, Some relations on the theory of dimensions, Mat. Sb. 29 (1951) 157-172] showed that maximal completely regular filters are disjoint prime, from which it was concluded that βX is a perfect extension for a Tychonoff space X. We extend this result, and other results of Skljarenko [E.G. Skljarenko, Some questions in the theory of bicompactifications, Amer. Math. Soc. Transl. Ser. 2 58 (1966) 216-266], by showing that a maximal regular filter on any Hausdorff space is disjoint prime.Open ultrafilters are integral to the study of maximal points and lower topologies in the partial order of Hausdorff topologies on a fixed set. We show that a maximal point in a Hausdorff space cannot have a neighborhood base of feebly compact neighborhoods. One corollary is that no locally countably compact Hausdorff topology is a lower topology, which was shown previously under the additional assumption of countable tightness by Alas and Wilson [O. Alas, R. Wilson, Which topologies can have immediate successors in the lattice of T1-topologies? Appl. Gen. Topol. 5 (2004) 231-242]. Another is that a maximal point in a feebly compact space is not a regular point. This generalizes results of both Carlson [N. Carlson, Lower upper topologies in the Hausdorff partial order on a fixed set, Topology Appl. 154 (2007) 619-624] and Costantini [C. Costantini, On some questions about posets of topologies on a fixed set, Topology Proc. 32 (2008) 187-225].  相似文献   

16.
The multiplicative spectrum of a complex Banach space X is the class (X) of all (automatically compact and Hausdorff) topological spaces appearing as spectra of Banach algebras (X, *) for all possible continuous multiplications on X turning X into a commutative associative complex algebra with unity. Properties of multiplicative spectra are studied. In particular, we show that (X n ) consists of countable compact spaces with at most n nonisolated points for any separable, hereditarily indecomposable Banach space X. We prove that (C[0, 1]) coincides with the class of all metrizable compact spaces. __________ Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 14, Algebra, 2004.  相似文献   

17.
A topological space X is strongly web‐compact if X admits a family {Aα: α ∈ ??} of relatively countably compact sets covering X and such that Aα ? Aβ for αβ. The main result of this paper states the following: Theorem A Let X and Y be topological groups and f a homomorphism between X and Y with closed graph. If X is Fréchet‐Urysohn and Baire and Y is strongly web‐compact, then f is continuous. This extends a result of Valdivia. We provide an example showing that the property of being strongly web‐compact is not productive. This applies to show that there are quasi‐Suslin spaces X whose product X × X is not quasi‐Suslin (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Let X denote the product of m-many second countable Hausdorff spaces. Main theorems: (1) If S?X is invariant under compositions, m is weakly accessible (resp., nonmeasurable), and F?S is sequentially closed and a sequential Gσ-set which is invariant under projections for finite sets (resp., F?S is sequentially open and sequentially closed), then F is closed. (2) If S?X is invariant under projections and m is nonmeasurable, then every sequentially continuous {0, 1} valued function on S is continuous. (3) A sequentially continuous {0, 1}-valued function on an m-adic space of nonmeasurable weight is continuous. Now let X denote the product of arbitrarily many W-spaces and S?X be invariant under compositions. (4) Then in S, the closure of any Q-open subset coincides with its sequential closure.  相似文献   

19.
We prove that if X is a locally compact σ-compact space, then on its quotient, γ(X) say, determined by the algebra of all real valued bounded continuous functions on X, the quotient topology and the completely regular topology defined by this algebra are equal. It follows from this that if X is second countable locally compact, then γ(X) is second countable locally compact Hausdorff if and only if it is first countable. The interest in these results originated in [1] and [7] where the primitive ideal space of a C*-algebra was considered.  相似文献   

20.
Given Banach spaces X, Yand a compact Hausdorff space K, we use polymeasures to give necessary conditions for a multilinear operator from C(K, X) into Yto be completely continuous (resp. unconditionally converging). We deduce necessary and sufficient conditions for Xto have the Schur property (resp. to contain no copy of c 0), and for Kto be scattered. This extends results concerning linear operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号