首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Dendrigraft poly(ϵ‐caprolactone)s with high molecular weight and narrow polydispersity are synthesized via a convenient generation‐growth approach. Copolymerization of ϵ‐caprolactone (CL) and 4‐(2‐benzoxyethoxy)‐ϵ‐caprolactone (BECL) with stannous octanoate as a catalyst affords a functionalized poly(ϵ‐caprolactone) (PCL) with benzyl‐protected hydroxyl side groups. After removal of benzyl groups by palladium‐catalyzed hydrogenolysis, the graft copolymerization of CL and BECL onto the hydroxyl‐bearing linear polyester (zero‐generation) affords the first‐generation graft polyester. Further deprotection and graft polymerization cycles led to dendrigraft polyesters. Molecular weights are multiplied in each graft copolymerization. The second‐generation dendrigraft poly(ϵ‐caprolactone) has an Mw of 236 000 g·mol−1 and Mw/Mn of 1.53.  相似文献   

2.
Living ω‐aluminum alkoxide poly‐ϵ‐caprolactone and poly‐D,L ‐lactide chains were synthesized by the ring‐opening polymerization of ϵ‐caprolactone (ϵ‐CL) and D,L ‐lactide (D,L ‐LA), respectively, and were used as macroinitiators for glycolide (GA) polymerization in tetrahydrofuran at 40 °C. The P(CL‐b‐GA) and P(LA‐b‐GA) diblock copolymers that formed were fractionated by the use of a selective solvent for each block and were characterized by 1H NMR spectroscopy and differential scanning calorimetry analysis. The livingness of the operative coordination–insertion mechanism is responsible for the control of the copolyester composition, the length of the blocks, and, ultimately, the thermal behavior. Because of the inherent insolubility of the polyglycolide blocks, microphase separation occurs during the course of the sequential polymerization, resulting in a stable, colloidal, nonaqueous copolymer dispersion, as confirmed by photon correlation spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 294–306, 2001  相似文献   

3.
Results of NMR studies of chain microstructure in polylactide, poly(lactide‐co‐ϵ‐caprolactone), poly(lactide‐co‐glycolide) and poly(glycolide‐ϵ‐caprolactone) are presented. The appropriate conditions of polymerization: temperature, solvents, type of initiators allows moulding of the structure of obtained polyesters. Statistical analysis of growing chains helps to identify in NMR spectra signals of the random and block segments of copolyester chains. Precise control of reaction conditions allows modification of chain structures by affecting rates of transesterification. Equations allowing for quantitative determination of the role of transesterification reactions on the basis of intensities of NMR resonance lines are given. Changes in the microstructure of macromolecular chains were determined using calculated values of transesterification coefficients, degree of randomness and values of average lengths of syndiotactic or isotactic blocks in lactide homopolymers or average lengths of comonomer units in copolymers.  相似文献   

4.
The ring‐opening polymerization of two caprolactone monomers catalyzed by zinc undecylenate (ZU) is reported. Polymerizations were performed in bulk with benzyl alcohol (BnOH) as an initiator at 90 and 110 °C, respectively. A slower polymerization rate was observed for γ‐octyloxy‐ϵ‐caprolactone as compared to ϵ‐caprolactone. Diblock copolymers were synthesized by the sequential monomer addition at 90 and 110 °C. The kinetic studies performed for the ring‐opening polymerization of ϵ‐caprolactone and γ‐octyloxy‐ϵ‐caprolactone and the successful synthesis of diblock copolymers by the sequential monomer addition confirmed the controlled/living nature of zinc undecylenate catalyzed reactions.  相似文献   

5.
Chitosan‐graft‐poly(ϵ‐caprolactone) was prepared via the ring‐opening graft polymerization of ϵ‐caprolactone (CL) through chitosan with 4‐dimethylaminopyridine as a catalyst and water as a swelling agent. The graft content of PCL within the graft copolymer was adjusted by the feed ratio of CL to chitosan, and the highest grafting concentration of PCL was up to about 400%. Fourier transform infrared, 1H NMR, and two‐dimensional heteronuclear single quantum coherence analyses indicated that the amino group (NH2 CH‐2) of chitosan initiated the graft polymerization of CL through the backbone of chitosan, and the hydroxyl group (HO CH2–6) of chitosan did not participate in initiating the graft polymerization. The percentage of amino groups initiating the graft polymerization decreased with an increasing molar ratio of CL to chitosan in the feed, and this was attributed to the fact that the graft polymerization system increasingly became heterogeneous with an increasing feed ratio of CL to chitosan. The physical properties of the graft copolymers were characterized by thermogravimetric analysis and wide‐angle X‐ray diffraction, respectively. These suggested that the introduction of PCL grafts through the chitosan backbone would to some extent destroy the crystalline structure of chitosan, and the PCL grafts existed in an amorphous structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5353–5361, 2006  相似文献   

6.
Ethylene oxide (EO) has been block‐polymerized with both ε‐caprolactone (ε‐CL) and γ‐methyl‐ε‐caprolactone (MCL) through the combination of the anionic polymerization of EO and the ring‐opening polymerization (ROP) of ε‐CL and MCL. ω‐Hydroxyl poly(ethylene oxide) has been reacted with triethylaluminum (OH/Al = 1) and converted into a macroinitiator for ROP of ε‐CL and MCL. In toluene at room temperature, this polymerization leads to a bimodal molecular weight distribution as a result of monomer insertion in only some of the aluminum alkoxide bonds. However, in a more polar solvent (methylene chloride) added with 1 equiv of a Lewis base (pyridine), the expected diblock is formed selectively, and this indicates that aggregation of the active species in toluene is responsible for a macroinitiator efficiency of less than 1. A series of amphiphilic diblock copolymers with poly(ε‐caprolactone) (semicrystalline) and poly(γ‐methyl‐ε‐caprolactone) (amorphous) as the hydrophobic blocks have been prepared and characterized with size exclusion chromatography, 1H NMR, IR, and wide‐angle X‐ray scattering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1132–1142, 2004  相似文献   

7.
AB block copolymers of ϵ-caprolactone and (L )-lactide could be prepared by ring-opening polymerization in the melt at 110°C using stannous octoate as a catalyst and ethanol as an initiator provided ϵ-caprolactone was polymerized first. Ethanol initiated the polymerization of ϵ-caprolactone producing a polymer with ϵ-caprolactone derived hydroxyl end groups which after addition of L -lactide in the second step of the polymerization initiated the ring-opening copolymerization of L -lactide. The number-average molecular weights of the poly(ϵ-caprolactone) blocks varied from 1.5 to 5.2 × 103, while those of the poly(L -lactide) blocks ranged from 17.4 to 49.7 × 103. The polydispersities of the block copolymers varied from 1.16 to 1.27. The number-average molecular weights of the polymers were controlled by the monomer/hydroxyl group ratio, and were independent on the monomer/stannous octoate ratio within the range of experimental conditions studied. When L -lactide was polymerized first, followed by copolymerization of ϵ-caprolactone, random copolymers were obtained. The formation of random copolymers was attributed to the occurrence of transesterification reactions. These side reactions were caused by the ϵ-caprolactone derived hydroxyl end groups generated during the copolymerization of ϵ-caprolactone with pre-polymers of L -lactide. The polymerization proceeds through an ester alcoholysis reaction mechanism, in which the stannous octoate activated ester groups of the monomers react with hydroxyl groups. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
A novel method is proposed to access to new poly(α‐amino‐ε‐caprolactone‐co‐ε‐caprolactone) using poly(α‐iodo‐ε‐caprolactone‐co‐ε‐caprolactone) as polymeric substrate. First, ring‐opening (co)polymerizations of α‐iodo‐ε‐caprolactone (αIεCL) with ε‐caprolactone (εCL) are performed using tin 2‐ethylhexanoate (Sn(Oct)2) as catalyst. (Co)polymers are fully characterized by 1H NMR, 13C NMR, FTIR, SEC, DSC, and TGA. Then, these iodinated polyesters are used as polymeric substrates to access to poly(α‐amino‐ε‐caprolactone‐co‐ε‐caprolactone) by two different strategies. The first one is the reaction of poly(αIεCL‐co‐εCL) with ammonia, the second one is the reduction of poly(αN3εCL‐co‐εCL) by hydrogenolysis. This poly(α‐amino‐ε‐caprolactone‐co‐ε‐caprolactone) (FαNH2εCL < 0.1) opens the way to new cationic and water‐soluble PCL‐based degradable polyesters. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6104–6115, 2009  相似文献   

9.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Amphiphilic, biodegradable block glycopolymers based on poly(ε‐caprolactone) (PCL) with various pendent saccharides were synthesized by combination of ring‐opening polymerization (ROP) and “click” chemistry. PCL macroinitiators obtained by ROP of ε‐caprolactone were used to initiate the ROP of 2‐bromo‐ε‐caprolactone (BrCL) to get diblock copolymers, PCL‐b‐PBrCL. Reaction of the block copolymers with sodium azide converted the bromine groups in the PBrCL block to azide groups. In the final step, click chemistry of alkynyl saccharides with the pendent azide groups of PCL‐b‐PBrCL led to the formation of the amphiphilic block glycopolymers. These copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography. The self‐assembly behavior of the amphiphilic block copolymers was investigated using transmission electron microscopy and atomic force microscope, spherical aggregates with saccharide groups on the surface were observed, and the aggregates could bind reversibly with Concanavalin A. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3583–3594, 2009  相似文献   

11.
ABA triblock copolymers of L ‐lactide (LL) and ε‐caprolactone (CL), designated as PLL‐P(LL‐co‐CL)‐PLL, were synthesized via a two‐step ring‐opening polymerization in bulk using diethylene glycol and stannous octoate as the initiating system. In the first‐step reaction, an approximately 50:50 mol% P(LL‐co‐CL) random copolymer (prepolymer) was prepared as the middle (B) block. This was then chain extended in the second‐step reaction by terminal block polymerization with more L ‐lactide. The percentage yields of the triblock copolymers were in excess of 95%. The prepolymers and triblock copolymers were characterized using a combination of dilute‐solution viscometry, gel permeation chromatography (GPC), 1H‐ and 13C‐NMR, and differential scanning calorimetry (DSC). It was found that the molecular weight of the prepolymer was controlled primarily by the diethylene glycol concentration. All of the triblock copolymers had molecular weights higher than their respective prepolymers. 13C‐NMR analysis confirmed that the prepolymers contained at least some random character and that the triblock copolymers consisted of additional terminal PLL end (A) blocks. From their DSC curves, the triblock copolymers were seen to be semi‐crystalline in morphology. Their glass transition, solid‐state crystallization, and melting temperature ranges, together with their heats of melting, all increased as the PLL end (A) block length increased. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
To improve the mechanical properties of granular corn starch‐filled poly(ϵ‐caprolactone) (PCL) compositions, three strategies were investigated including the hydrophobic coating of starch granules by reaction with n‐butyl isocyanate, the addition of PCL‐grafted dextran (PGD) as an amphiphilic compatibilizer, and the use of PCL‐grafted granular starch (PGS). Except for the chemical modification of granular starch by reaction with n‐butyl isocyanate, the synthesis of both PGD and PGS relies upon the controlled ring‐opening polymerization (ROP) of ϵ‐caprolactone (CL) initiated by Al‐alkoxides generated onto the polysaccharide, either dextran or starch particles. While the hydrophobic coating of starch only provides higher tensile strength and elongation at break, these properties as well as Young's modulus and strength at yield of the PCL/starch blends were remarkably increased by locating the PCL‐grafted dextran at the filler/matrix interface. It is however worth pointing out that a tougher and stiffer material was obtained by melt blending PGS and pure PCL. These property changes were analyzed and clearly related to parameters such as filler dispersion, interfacial tension, interfacial adhesion and reinforcement by PCL crystallites.  相似文献   

13.
We describe the synthesis and characterization of three‐arm star block copolymers based on polystyrene, poly(ethylene oxide), poly(ϵ‐caprolactone), poly(methyl methacrylate), poly(tert‐butyl methacrylate) and poly(L‐lactide) blocks. The copolymers were obtained by a route consisting of two successive initiation steps on functional macroinitiator. Some results on micellization and crystallization are given. They indicate an increase in the miscibility of different incompatible blocks.  相似文献   

14.
Poly(D ,L -lactide)–poly(ϵ-caprolactone)–poly(ethylene glycol)–poly(ϵ-caprolactone)–poly(D ,L -lactide) block copolymer (PLA–PCL–PEG–PCL–PLA) was prepared by copolymerization of ϵ-caprolactone (ϵ-CL) and D ,L -lactide (D ,L -LA) initiated by potassium poly(ethylene glycol)ate in THF at 25°C. The copolymers with different composition were synthesized by adjusting the mole ratio of reaction mixture. The resulted copolymers were characterized by 1H-NMR, 13C-NMR, IR, DSC, and GPC. Efforts to prepare copolymers with the corresponding structure of PCL–PLA–PEG–PLA–PCL and D ,L -lactide/ϵ-caprolactone random copolymers were not successful. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
The recently introduced procedure of quantitatively switching thiocarbonyl thio capped (RAFT) polymers into hydroxyl terminated species was employed to generate narrow polydispersity (PDI ≈ 1.2) sulfur‐free poly(styrene)‐block‐poly(ε‐caprolactone) polymers (26,000 ≤ Mn/g·mol?1 < 45,000). The ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) was conducted under organocatalysis employing 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD). The obtained block copolymers were thoroughly analyzed via size exclusion chromatography (SEC), NMR, as well as liquid adsorption chromatography under critical conditions coupled to SEC (LACCC‐SEC) to evidence the block copolymer structure and the efficiency of the synthetic process. The current contribution demonstrates that the RAFT process can serve as a methodology for the generation of sulfur‐free block copolymers via an efficient end group switch. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
Seven magnesium complexes ( 1–7 ) were synthesized by reaction of new ( L 3 ‐H – L 5 ‐H ) and previously reported ketoimine pro‐ligands with dibutyl magnesium and were isolated in 59–70% yields. Complexes 1–7 were characterized fully and consisted of bis‐ligated homoleptic ketoiminates coordinated in distorted octahedral geometry around the magnesium centers. The complexes were investigated for their ability to initiate the ring opening polymerization (ROP) of l ‐lactide (L‐LA) to poly‐lactic acid (PLA) and ?‐caprolactone (?CL) to poly‐caprolactone in the presence of 4‐fluorophenol co‐catalyst. For L‐LA polymerization, complexes containing ligand electron‐donating groups ( 1–5 ) achieved >90% conversion in 2 h at 100 °C, while the presence of CF3 groups in 6 and 7 slowed or resulted in no PLA detected. With ?CL, ROP initiated with 1–7 resulted in lower percentage conversion with similar electronic effects. Moderate molecular weight PLA polymeric material (14.3–21.3 kDa) with low polydispersity index values (1.23–1.56) was obtained, and ROP appeared to be living in nature. Copolymerization of L‐LA and ?CL yielded block copolymers only from the sequential polymerization of ?CL followed by L‐LA and not the reverse sequence of monomers or the simultaneous presence of both monomers. Polymers and copolymers were characterized with NMR, gel permeation chromatography, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 48–59  相似文献   

17.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

18.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

19.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

20.
The polymerization of ε‐caprolactone (ε‐CL) has been assessed in water using various Brønsted acids as catalysts. The reaction was found to be quantitative at 100 °C, leading to number–average molecular weights up to 5000 g mol?1. The Brønsted acid‐catalyzed polymerization of ε‐CL in water was further conducted in the presence of water‐soluble polysaccharides thereby affording graft copolymers. The approach enables an easy, mild access to dextran hydroxyesters. For low degree of substitution, the latter self‐assembles in water to form nanoparticles. Poly(ε‐CL)‐graft‐methylcellulose copolymers can also be obtained via a similar approach. It is noteworthy that the methodology reported herein is a one‐step route to poly(ε‐CL)‐graft‐water‐soluble polysaccharides, operating in mild conditions, that is, at low temperatures, using readily available metal‐free catalysts and water as a solvent. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2139–2145  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号