首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新型手性近晶C相液晶共聚酯的设计与合成   总被引:2,自引:0,他引:2  
以对苯二甲酰氯 ,2 ,5 二 [4 ((s) 2 甲基丁氧基 )苯甲酰氧基 ]对苯二酚和乙二醇、一缩乙二醇、二缩三乙二醇、三缩四乙二醇和聚乙二醇为单体 ,采用低温溶液缩聚方法 ,合成了一系列新的手性近晶C相串型液晶共聚酯 .共聚酯通过GPC、DSC、TG、WAXD、偏光显微镜和旋光仪等方法表征 .发现所有的共聚酯加热至各自的熔点以上都能形成液晶态 ,在液晶态可以观察到近晶相的焦锥织构 ,所有的手性化合物和共聚酯都有较高的旋光性 .通过变温X 射线衍射研究结合偏光显微镜观察和旋光分析证明它们为手性近晶C相 .所有共聚酯的熔融温度 (Tm)和各向同性温度 (Ti)随共聚酯中不同柔性链段长度的增加逐渐降低 ,液晶态温度范围变宽  相似文献   

2.
新型光活性串型液晶共聚物合成与表征   总被引:1,自引:0,他引:1  
以对苯二甲酰氯,2 ,5 二[4 ((S) 2 甲基丁氧基) 苯甲酰氧基] 对苯二酚和己二醇为单体,采用溶液共缩聚的方法,合成了一系列新的光活性串型液晶共聚物.共聚物通过GPC、DSC、TG、WAXD、偏光显微镜和旋光仪等方法表征.发现所有的共聚物加热至各自的熔点以上都能形成液晶态,在液晶态可以观察到沙地织构或破碎焦锥织构.通过变温X 射线衍射证明它们为手性近晶C(S*C) 相.所有共聚物的熔点( Tm) 和液晶态清亮点( Ti) 随共聚物中己二醇用量的改变呈规律性变化.共聚物有很高的旋光性,在合成反应中旋光性保持.  相似文献   

3.
A new series of chiral shish-kebab type liquid crystal block copolymers that form the smecticC(Sc~*) phase was synthesized by solution polycondensation. The copolymers were characterized by GPC.DSC. TG, POM. X-ray diffraction and polarimeter. The copolymers 7 entered into liquid crystal phase whenthey were heated to their melting temperatures (T_m) and the copolymers 8 were in liquid crystal phase at roomtemperature with low viscosities. The smectic sanded texture or focal-conic texture were observed on POM.All the chiral block copolymers showed high optical activity. No racemization has happened. Temperature-variable X-ray diffraction study together with POM and polarimetric analysis realized that they are chiralsmectic C(Sc~*) phase. Thus we offer in this report the first example of shish-kebab type liquid crystal blockcopolymers that form a chiral smectic C(Sc~*) phase. The variation of melting and isotropization temperatureswith molecular structure was also discussed.  相似文献   

4.
近晶C(Sc)相串型液晶高分子的合成与表征   总被引:1,自引:0,他引:1  
以2,5 二(对烷氧基苯甲酰氧基) 对苯二酚和不同结构的脂族二酰氯为单体,采用低温溶液缩聚的方法,合成了一系列新的液晶基元垂直于分子主链的Sc相串型液晶高分子.单体的结构通过元素分析、IR、1H NMR和MS等方法确证.聚合物通过GPC、DSC、TG、WAXD和偏光显微镜等方法测试表征.研究发现,所有的聚合物加热至各自的熔点以上都能形成液晶态,在液晶态可以观察到纹影或焦锥织构.通过变温X 射线衍射证明它们为Sc相.所有聚合物的熔点(Tm)和液晶态的清亮点(T1)随分子中末端烷氧基增大和柔性间隔段长度增加逐渐降低,液晶态温度范围变窄.  相似文献   

5.
Chiral liquid crystalline polymers containing biphenylene and azobenzene as the mesogensand S(-)-2-methyl-1-butanol as the chiral end group were synthesized and characterized by DSC,POM and X-ray diffraction. These polymers show crystalline or glassy liquid crystalline phase atroom temperature. Most polymers show smectic A or highly ordered smectic phases abovemelting temperature.  相似文献   

6.
The detailed mesophasic characterization of main chain liquid crystalline polyurethanes containing biphenyl mesogen, which were synthesized by the novel AB‐type self‐polycondensation approach, was carried out by using Differential Scanning Calorimetry (DSC), Polarized Optical Microscopy (POM), variable temperature X‐ray Diffraction (XRD), and Fourier Transform Infrared (FT‐IR) spectroscopic studies. The type of mesophase present in these polymers was identified to be the smectic A phase by POM and XRD studies. The smectic layer thickness was found to increase as the length of the spacer increased. The effect of temperature on the hydrogen bonding was analyzed by FT‐IR studies. The curve‐fitting analysis of the NH stretching and C?O stretching modes of vibrations indicated a gradual decrease in hydrogen bonding during the transition from the crystalline state to the mesophase. The mesophase to isotropic liquid transition was then accompanied by the complete disappearance of the hydrogen bonding. The biphenyl bands also showed changes during phase transitions due to the coupling of biphenyl vibration modes with the urethane linkage attached to it. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1903–1912, 2005  相似文献   

7.
Polyoxymethylene (POM) fiber was produced by melt spinning with a high take‐up speed, which imposed a strong flow field. An unexpected formation of a shish‐kebab morphology with multiple shish of POM fibers was reported for the first time. This morphology is a large‐scale shish kebab with a diameter of 10.5 µm. Further orientation of the POM fiber was obtained by hot stretching twice at 160°C. Two crystalline morphology evolution processes were also observed: (i) the process from the large‐scale shish‐kebab to the deformed small shish‐kebab and (ii) the process from the deformed small shish‐kebab to the perfect whiskers. Compared with the melt spinning fiber, fiber tensile strength with first and second hot stretching increased by 976% and 1705%, respectively. The crystalline melting behavior of fibers significantly changes after the first and second hot stretching. The flow field induces a large number of extended chain crystals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Two series of vinyl‐terminated, side‐chain liquid‐crystalline polyethers containing 4,4′‐biphenyl and 2,6‐naphthalene moieties as mesogenic cores with several contents of vinyl crosslinkable groups were synthesized by chemically modifying poly(epichlorohydrin) with mixtures of saturated and vinyl‐terminated mesogenic acids. In most cases the degree of modification was over 90%. The polymers were characterized by chlorine analysis, IR and 1H and 13C NMR spectroscopies, viscometry, size exclusion chromatography/multi‐angle laser light scattering, and thermogravimetric analysis. The liquid‐crystal behavior of all the synthesized polymers was examined by differential scanning calorimetry, polarized optical microscopy (POM), and X‐ray diffraction on mechanically oriented samples. The crosslinking of most polymers was done by peroxide‐type initiators, which generally led to liquid‐crystal elastomers. The mesophase organization was maintained on the crosslinked materials, as confirmed by POM and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3384–3399, 2003  相似文献   

9.
Structural evolution of gel‐spun ultra‐high molecular weight polyethylene fibers with high concentration solution via hot stretching process was investigated by in situ small‐angle X‐ray scattering, in situ wide‐angle X‐ray diffraction measurements, scanning electron microscopy, and differential scanning calorimetry. With the increase of stretching strain, the long period continuously increases at relative lower stretching temperature, while it first increases and then decreases rapidly at relative higher stretching temperature. The kebab thickness almost keeps constant during the whole hot‐stretching process and the kebab diameter continually decreases for all stretching temperatures. Moreover, the length of shish decreases slightly and the shish quantity increases although there is almost no change in the diameter of shish crystals during the hot stretching process. The degree of crystal orientation at different temperatures is as high as above 0.9 during the whole stretching process. These results indicate that the shish‐kebab crystals in ultra‐high molecular weight polyethylene fibers can transform continuously into the micro‐fibril structure composed mostly of shish crystals through the hot stretching process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 225–238  相似文献   

10.
Two series of vinyl‐terminated side‐chain liquid‐crystalline polyethers containing ethylene oxide or glycidyl aromatic carboxylates as spacers were synthesized. The mesogenic cores were 4,4′‐biphenyl or 2,6‐naphthalene moieties. The polymers were synthesized by chemically modifying poly(epichlorohydrin) or poly(epichlorohydrin)‐poly(ethylene oxide) with the corresponding mesogenic carboxylic acids or with mixtures of these acids and the nonmesogenic non‐crosslinkable analogous 4‐biphenyl‐ and 2‐naphthalenecarboxylic acids. In most cases the degree of modification achieved was higher than 90%. The polymers were characterized by chlorine analysis, IR, and 1H and 13C NMR spectroscopies; viscosimetry; size exclusion chromatography; multi‐angle laser light scattering; and thermogravimetric analysis. The liquid‐crystal behavior, shown by most polymers, was examined by differential scanning calorimetry, polarized optical microscopy (POM), and X‐ray diffraction on mechanically oriented samples. The crosslinking of most polymers was done by peroxide‐type initiators that led to liquid‐crystal thermosets or elastomers. The freezing of the mesophase organization on the crosslinked materials was confirmed by POM and X‐ray diffraction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3893–3908, 2002  相似文献   

11.
A series of liquid crystal polymers (LCPs) with T‐shaped two‐dimensional mesogenic units were synthesized via solution polycondensation. The LCPs were used as ligand polymers to coordinate with palladium dichloride, by which a series of polymeric palladium complexes were prepared. The liquid crystalline behaviors of the compounds were characterized using differential scanning calorimetry, polarized microscopy and X‐ray diffraction. The entire palladium complexes went to liquid crystal phase when heated to their melting temperature (T m), and a threaded texture was observed. The melting point of all the complexes changes regularly with the increase of the end alkoxy group length and the flexible spacer unit in the ligand polymer. It is worth noting that some of the complexes without end substituent groups in the ligand polymer were also found to show liquid crystal behaviors, which would be a subject for further investigation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The double melting behavior of a thermotropic liquid crystalline polyimide was studied by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS). This liquid crystalline polyimide exhibited a normal melting peak around 278 °C and transformed into a smectic A phase. The smectic A phase changed to nematic phase upon heating to 298 °C, then became isotropic melt around 345 °C. The samples annealed or isothermally crystallized at lower temperature showed double melting endotherms during heating scan. The annealing‐induced melting endotherm was highly dependent on annealing conditions, whereas the normal melting endotherm was almost not influenced by annealing when the annealing temperature was low. Various possibilities for the lower melting endotherm are discussed. The equilibrium melting points of both melting peaks were extrapolated to be 283.2 °C. Combined analytical results showed that the double melting peaks were from the melting of the two types of crystallites generated from two crystallization processes: a slow and a fast one. Fast crystallization may start from the well‐aligned liquid crystal domains, whereas the slow one may be from the fringed or amorphous regions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3018–3031, 2000  相似文献   

13.
Summary: We prepared an amphiphilic, comb‐like poly(oxyethylene) containing decyl‐tri(oxyethylene) amphiphiles in the side chain using a polymer analogous reaction to obtain a novel nonionic amphiphilic polymeric system with high molecular weight. The amphiphilic comb‐like poly(oxyethylene) itself only showed a side‐chain crystalline phase below its melting temperature of −31 °C. When the polymer was mixed with lithium perchlorate, a smectic liquid‐crystalline phase appeared. The ordered phases of the polymer and the polymer mixture were studied by differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction.

POM image (200 X) of D3OTP1 at room temperature.  相似文献   


14.
液晶性芳香醛化合物的合成   总被引:2,自引:0,他引:2  
以对羟基苯甲醛和对烷氧基联苯酰氯为原料,采用爱因宏反应,合成了一系列4-(4'-烷氧基联苯基-4-羧基)苯甲醛.化合物的结构通过元素分析、红外光谱、核磁共振和质谱等方法确证.化合物的液晶行为用示差扫描量热法、偏光显微镜和旋光仪等方法表征.结果表明,所有的化合物加热至各自的熔点以上都能形成液晶态.在液晶态可以观察到手性近晶C相、近晶相、胆甾相和向列相的典型织构.含手性中心的化合物都有较高的旋光性,而且在合成反应中旋光性得到保持.随着分子末端烷氧基碳原子数增加,化合物(除2a和4a外)的熔点(Tm)和液晶态的清亮点(Ti)呈规律性变化,近晶相范围和近晶相-向列相转变温度渐增,而向列相温度范围递减,至十二烷基时,仅呈现近晶性.  相似文献   

15.
Formation of shish‐kebab crystals due to the coil–stretch transition under shear in the molten state using a bimodal polyethylene system with high molecular weight (HMW) fraction having different branch content was investigated. In specific, in situ small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques were used to study the structure evolution of shish‐kebab crystals at high temperatures under simple shear. The SAXS results revealed that with the increase of branch content, shish‐kebab crystals became more stable at high temperatures (e.g., 139 °C). However, the shish length of the bimodal PE containing 0.11% branch was shorter than that with no branch. The WAXD results showed that the degree of crystallization for bimodal PE with HMW fraction having 0.11% branch increased with time but reached a plateau value of 1%, while that with no branch increased continuously till 11%. Furthermore, the crystal orientation of bimodal PE with HMW fraction having 0.11% branch was above 0.9 and maintained at a constant value, while that with no branch decreased from 0.9 to 0.1 upon relaxation. This study indicates that even though the crystallizability of the HMW fraction with branch content decreased, they could effectively stabilize the shear‐induced crystalline structure with shorter shish‐kebab crystals. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 786–794  相似文献   

16.
A series of thermotropic liquid crystalline polyurethanes (LCPUs) were synthesized by the polyaddition reactions of 2,4‐toluene diisocyanate (2,4‐TDI) with 4,4′‐bis(6‐hydroxyhexoxy)biphenyl (BHHBP) and aliphatic diol. The intrinsic viscosities of the polymers were measured by Ubbelohde viscometer, and the chemical structure was confirmed by Fourier transform infrared spectroscopy (FT‐IR). The LCPUs were examined by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA). The intrinsic viscosities were 0.56–0.83 dl/g. According to the melting point (Tm) and the isotropic temperature (Ti) of the LCPUs, the temperature range of the liquid crystalline phase became wider with increased number of methylene spacers in the polyurethane. The LCPUs exhibited a nematic phase with a threaded texture and had a wide mesophase temperature range. The decomposition temperature of the LCPUs was >300°C. On WAXD, the LCPUs give a dispersing peak at 2θ ≈ 20°, and a strong diffraction peak at 2θ ≈ 25°. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   

18.
To overcome the defects of the thermal instability of azobenzene, a series of novel photochromic, chiral, liquid‐crystalline monomers and polymers were synthesized from (+)‐camphor. The copolymerization of the photochromic monomers with comonomers was carried out. The synthesized monomers and polymers were identified with nuclear magnetic resonance, Fourier transform infrared, and elemental analysis. The composition of the copolymers was estimated with elemental analysis. The specific rotation of the chiral compounds and polymers was evaluated. The thermal stability and phases of the polymers during heating and cooling cycles were studied with differential scanning calorimetry and thermogravimetric analysis. The phases of the polymers were identified with polarized optical microscopy textures and X‐ray diffraction analysis. The distance between the layers of smectic liquid crystals was estimated from the diffraction angles. Photoisomerization of the configurational E/Z structures was investigated with an ultraviolet–visible spectrophotometer with 300‐nm ultraviolet irradiation. The thermal stability of the Z‐structural segment in the polymers was confirmed through the heating of the polymer at 70 °C for over 10 h. The photoisomerization and thermal stability of the C?C bond in the polymeric materials were demonstrated through a series of novel chiral polymers synthesized in this investigation. Both the polarity of the center part and the molecular length at the ends of the molecules were found to be necessary factors for the formation of liquid‐crystalline molecules. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2026–2037, 2007  相似文献   

19.
Rigid‐chain metallomesogenic polymers containing Cu(II) or VO(II) were prepared and characterized. All the polymers were soluble and melted without decomposition. They showed a thermotropic liquid–crystal (LC) behavior, and the mesophases were invariably preserved for a long time at room temperature in a metastable condition, with respect to the semicrystalline state. The nature of the mesophases of the Cu(II)‐containing polymers was similar to that observed in analogous organic rigid‐chain polymers having long lateral alkyl chains packed as extended ribbons. The VO(II)‐containing polymers showed an LC polymorphism involving a smectic A and a nematic phase. For all the polymers in a smectic or smecticlike state at room temperature, X‐ray diffraction data suggested short mean distances among the metal ions arranged in layers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2342–2349, 2001  相似文献   

20.
A new series of halogen-containing side chain ferroelectric liquid crystal polymers was synthesized. Mesophases were characterized by differential scanning calorimetry, polarizing optical microscopy, X-ray diffraction and molecular simulation. The behaviour of the liquid crystalline phase was investigated with variation of chiral centres, spacer units and grafted ratios. It was found that the thermal stability and temperature range of the chiral smectic C phase decreased with increasing length of the oligo-oxyethylene spacer, and decreasing mesogenic group content. The bulky substituent attached to the chiral centre reduces molecular packing in smectic liquid crystal phases, which disturbs the orientation of the side chain liquid crystal polymer. Furthermore, the influence of molecular structure on electrooptical properties of FLCPs has been studied by broad band dielectric spectroscopy (from 0.1 to 1 ×10 6 Hz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号