首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The sliding friction of various kinds of hydrogels has been studied and it was found that the frictional behaviors ofthe hydrogels do not conform to Amonton's law F=μW which well describes the friction of solids. The frictional force andits dependence on the load are quite different depending on the chemical structures of the gels, surface properties of theopposing substrates, and the measurement condition. The gel friction is explained in terms of interracial interaction, eitherattractive or repulsive, between the polymer chain and the solid surface. According to this model, the friction is ascribed tothe viscous flow of solvent at the interface in the repulsive case. In the attractive case, the force to detach the adsorbing chainfrom the substrate appears as friction. The surface adhesion between glass particles and gels measured by AFM showed agood correlation with the friction, which supported the repulsion-adsorption model proposed by the authors.  相似文献   

2.
The frictional behavior of poly(2‐acrylamido‐2‐methylpropanesulfonic acid) (PAMPS) hydrogel sliding against a glass substrate in water over a wide sliding velocity (v) region has been investigated. The results showed that the frictional behavior of PAMPS gel conformed to a hydrodynamic lubrication mechanism only at relatively high sliding velocities. At low sliding velocities, a “negative” velocity dependence of friction was observed, which we believe not to be attributable to the experimental friction‐measuring mode used. This wider and weak mixed region at low sliding velocities is in contrast to the extremely narrow mixed region in the case of solid friction with a lubricant. The area of the PAMPS hydrogel surface subject to shearing decreased with increasing sliding velocity, and this would seem to be responsible for the weakly negative dependence of friction on velocity. In addition, the friction was found to increase with increasing the compressive modulus (E) of the gels attributing to the shearing exerted on the gel surface, in which the shear stress increased with E. The hydration layer between the sliding surfaces also contributes to the friction and weakens the dependence of friction on E to some extent. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 765–772  相似文献   

3.
Polyhedral oligomeric silsesquioxane hybrid temperature and pH double‐responsive hydrogels with organic–inorganic co‐crosslinked networks are synthesized by in situ, free‐radical polymerization of N‐isopropylacrylamide and dimethylaminoethyl methacrylate in the presence of both organic crosslinker N,N′‐methylenebis(acrylamide) (BIS) and inorganic crosslinker octavinyl polyhedral oligomeric silsesquioxane (OvPOSS) in tetrahydrofuran media. The resulting hydrogels (OR‐OvP gels) display obvious temperature and pH double responsiveness, OvPOSS particles dispersed in polymer make a dominant effect on the properties of gels. With the increase of OvPOSS, the aggregation of particles on nano‐ or microscale happens and causes a considerable change on the properties of gels, such as the lower critical solution temperature and better compression strength. Specially, the interconnected microporous structure of gels ascribed to the microphase separation results in faster deswelling rate, which makes the gel become attractive. Besides, the crosslink by BIS intensifies the heterogeneity of gels significantly, which could also be used to adjust the properties of gels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1494–1504  相似文献   

4.
Temperature‐responsive hydrogels are one of the most widely studied types of stimuli‐responsive hydrogel systems. Their ability to transition between their swollen and collapsed states makes them attractive for controlled drug delivery, microfluidic devices, and biosensor applications. Recent work has shown that poly(ethylene glycol) (PEG) methacrylate polymers are temperature‐responsive and exhibit a wide range of lower critical solution temperatures based on the length of ethylene glycol units in the macromer chain. The addition of iron oxide nanoparticles into the hydrogel matrix can provide the ability to remotely heat the gels upon exposure to an alternating magnetic field (AMF). In this work, diethylene glycol (n = 2) methyl ether methacrylate and PEG (n = 4.5) methyl ether methacrylate copolymers were polymerized into hydrogels with 5 mol % PEG 600 (n = 13.6) dimethacrylate as the crosslinker along with 5 wt % iron oxide nanoparticles. Volumetric swelling studies were completed from 22 to 80 °C and confirmed the temperature‐responsive nature of the hydrogel systems. The ability of the gels to collapse in response to rapid temperature changes when exposed to an AMF was demonstrated showing their potential use in biomedical applications such as controlled drug delivery and hyperthermia therapy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3229–3235, 2010  相似文献   

5.
Aqueous gel deswelling rates for copolymer hydrogels comprising N‐isopropylacrylamide (IPAAm) and 2‐carboxyisopropylacrylamide (CIPAAm) in response to increasing temperatures were investigated. Compared with pure IPAAm‐based gels, IPAAm–CIPAAm gels shrink very rapidly in response to small temperature increases across their lower critical solution temperature (their volume is reduced by five‐sixths within 60 s). Shrinking rates for these hydrogels increase with increasing CIPAAm content. In contrast, structurally analogous IPAAm–acrylic acid (AAc) copolymer gels lose their temperature sensitivity with the introduction of only a few mole percent of AAc. Additionally, deswelling rates of IPAAm–AAc gels decrease with increasing AAc content. These results indicate that IPAAm–CIPAAm copolymer gels behave distinctly from IPAAm–AAc systems even if both comonomers, CIPAAm and AAc, possess carboxylic acid groups. Thus, we propose that the sensitive deswelling behavior for IPAAm–CIPAAm gels results from strong hydrophobic chain aggregation maintained between network polymer chains due to the similar chemical structures of CIPAAm and IPAAm. This structural homology facilitates aggregation of chain isopropylamide groups for both IPAAm and CIPAAm sequences with increasing temperature. The incorporation of AAc, however, shows no structural homology to IPAAm, inhibiting chain aggregation and limiting collapse. A functionalized temperature‐sensitive poly(N‐isopropylacrylamide) hydrogel containing carboxylic acid groups is possible with CIPAAm, producing rapid and large volume changes in response to smaller temperature changes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 335–342, 2001  相似文献   

6.
Copoly[Orn/Orn(Cou)] containing δ‐7‐coumaryloxyacetyl‐L ‐ornithine [Orn(Cou)] and L ‐ornithine (Orn) residues was synthesized by the N‐carboxyanhydride method. When aqueous solutions of copoly[Orn/Orn(Cou)] containing 5–10 mol‐% of Orn(Cou) are irradiated, the photoinduced dimerization reaction between coumarin moieties in the side chains proceeds slowly, and after 24 h the solutions become transparent hydrogels. The gels exhibit solvent‐induced reversible expansion and contraction behavior in both water and ethanol. The biodegradation of the hydrogels by proteolytic enzymes and soil filamentous fungi is investigated using photocrosslinked copoly[Orn/Orn(Cou)] gels. The copoly[Orn89/Orn(Cou)11] gel is degradable by protease type XXIII, but not by trypsin. In the biochemical oxygen demand test, the order of the microbial biodegradation (%) was Rhizopus sp. (92%) > A. oryzae (38%) > P. caseicolum (18%) > P. citrinum (11%) > Cladosporium sp. (6%). The order for the copoly[Orn89/Orn(Cou)11] hydrogel is inverse to that for a polylysine/glutaraldehyde gel. These results suggest that the biodegradabilities of photocrosslinked hydrogels can be controlled by the monomer ratio of Orn, Orn(Cou) and lysine (Lys) in the parent copoly(amino acid)s of the photocrosslinked hydrogels.  相似文献   

7.
In this article, the synthesis and characterization of novel hydrogel systems designed for colon‐targeting drug delivery are reported. The gels were composed of konjac glucomannan, copolymerized with acrylic acid, and crosslinked by the aromatic azo agent bis(methacryloylamino)‐azobenzene. The influence of various parameters on the dynamic and equilibrium swelling ratios (SRs) of the hydrogels was investigated. It is shown that the SR was inversely proportional to the grafting degree of acrylic acid and the content of bis(methacryloylamino)‐azobenzene. The dependence of SR on the pH indicates that obtained hydrogels are potential for drug delivery to colon. It was possible to modulate the degree of swelling and the pH sensitivity of the gels by changing crosslinking density of the polymer. The main chain of hydrogels can be degraded by β‐glycosidase which is abundant in colon. They can be in vitro degraded for 73% in a month by Cereflo® and 86% in 20 days by Mannaway25L. We have also prepared the hydrogels that loaded with bovine serum albumin about 1.5%, 3%, 9%, and 20% by weight. In vitro release of model drug bovine serum albumin was studied in the presence of Mannaway25L or Fungamyl®800L in pH 7.4 phosphate buffer at 37 °C. The drug release can be controlled by the biodegradation of the hydrogels. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4370–4378, 2004  相似文献   

8.
Organic–inorganic hybrid gels containing Si‐vinylene units have been synthesized by a hydrosilylation reaction of tri‐ or tetra‐ethynyl aryl compounds, 1,3,5‐triethynylbenzene (TEB), 3,3′,5,5′‐tetraethynylbiphenyl (TEBP), or tetrakis(4‐ethynylphenyl)methane (TEPM), and bisdimethylsilyl compounds, 1,1,3,3‐tetramethyldisiloxane (TMDS) or 1,4‐bisdimetylsilylbenzene (BDMSB), in toluene. Network structure of the resulting gels was quantitatively characterized by a scanning microscopic light scattering. The reactions yielded the gels having homogeneous network structure of 1.5–2.9 nm mesh size under the monomer concentrations that were relatively higher than the critical gelation concentration. The gels obtained from TEB showed broad absorption in the range from 340 to 370 nm, and emission in the range from 440 to 490 nm. The TEB–BDMSB gels showed remarkable red shift of the emission in comparison with that of the corresponding reaction solutions derived from the network formed by σ–π conjugation. The TEPM–TMDS, BDMSB gels exited by 280 nm showed not only the emission peak at around 360 nm derived from TEPM, but the broad peak at around 420 nm, which should be derived from interaction between phenyl groups of TEPM in the gels. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1360–1368  相似文献   

9.
The thermosensitive graphene oxide (GO)/poly(N‐isopropyl acrylamide) (pNIPAM) composite hydrogels are prepared, and their tribological properties in response to external stimuli are evaluated. The frictional coefficient of the hydrogels is closely related to the gel composition and ambient temperature. When the gel is in swelling state below the low critical solution temperature (LCST), it shows ultra‐low friction and exhibits high friction at a shrunk state above the LCST. The huge difference of frictional coefficient under two states can be reversibly switched many times by altering the temperature. The incorporation of a nonthermal sensitive monomer into pNIPAM could change the LCST and thus the transformation point of frictional coefficient can be altered. These reversible and tunable frictional hydrogels have potential application in the design of intelligent control equipment.

  相似文献   


10.
Hydrogels based on n‐alkyl methacrylate esters (n‐AMA) of various chain lengths, acrylic acid, and acrylamide crosslinked with 4,4′‐di(methacryloylmino)azobenzene were prepared. Swelling kinetics and the mechanism of degradation in vitro of the hydrogels as well as the mutual relations between both were studied by the immersion of slabs in buffered solutions at pH 7.4. The diffusion of water into the slabs was discussed on the stress‐relaxation model of polymer chains. The results obtained agreed well with Schott's second‐order diffusion kinetics. The gels are degradable by anaerobes in the colon. The results obtained showed that the degradation of networks proceeded via a pore mechanism. The factors influencing the swelling and degradation of the gels include the degree of crosslinking, the lengths of the n‐AMA side chains, and the composition. These hydrogels have the potential for colon‐specific drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3128–3137, 2001  相似文献   

11.
Despite the efficiency and robustness of the widely used copper‐catalyzed 1,3‐dipolar cycloaddition reaction, the use of copper as a catalyst is often not attractive, particularly for materials intended for biological systems. The use of photo‐initiated thiol‐ene as an alternative “click” reaction to synthesize “model networks” is investigated here. Poly(N‐isopropylacrylamide) precursors were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and were designed to have trithiocarbonate moieties as end groups. This structure design provides opportunity for subsequent end‐group modifications in preparation for thiol‐ene “click.” Two reaction routes have been proposed and studied to yield thiol and ene moieties. The advantages and disadvantages of each reaction path were investigated to propose a simple but efficient route to prepare copper‐free “click” hydrogels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4626–4636  相似文献   

12.
N‐vinyl‐2‐pyrrolidone (VP) and 2‐hydroxyethyl methacrylate (HEMA) copolymeric gels have been synthesized using UV‐initiated photopolymerization to understand their characteristic behavior for development as a bioengineering material, specifically for tissue expansion. The properties of the gels have been investigated by systematic variation of the monomer feed composition and initiator and crosslinker concentrations as well as UV irradiation intensity, which was controlled by various photomasks. The swelling kinetics and network characteristics for the various hydrogels were investigated through the observation of gel swelling behavior in saline solutions and compression modulus determination of the fully swollen hydrogels. The equilibrium swelling ratio (qe) of the gels increased as expected with increasing VP content and decreasing crosslinker concentration. However, it was found that as the amount of initiator or UV intensity increased, unexpectedly qe also increased, which indicates a network structure with decreasing effective crosslink density (νe) (or increasing average molecular weight between crosslinks (Mc)). Based on this anomalous swelling behavior and thermal analysis of the gels, a molecular structure is proposed consisting of increasing number of dangling chain ends within the polymer network. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1450–1462, 2008  相似文献   

13.
Poly(N‐acryloyl‐N′‐ethyl piperazine‐co‐N‐isopropylacrylamide) hydrogels were prepared by thermal free‐radical copolymerization of N‐acryloyl‐N′‐ethyl piperazine (AcrNEP) and N‐isopropylacrylamide (NIPAM) in solution using N, N′‐methylene bisacrylamide as the crosslinking agent. The gels were responsive to changes in external stimuli such as pH and temperature. The pH and temperature responsive character of the gels was greatly dependent on the monomer content, namely AcrNEP and NIPAM, respectively. The gels swelled in acidic (pH 2) and de‐swelled in basic (pH 10) solutions with a response time of 60 min. With increase in temperature from 23 to 80 °C the swelling of the gels decreased continuously and this effect was different in acidic and basic solutions. The temperature dependence of equilibrium water content of the gels was evaluated by the Gibbs–Helmholtz equation. Detailed analysis of the swelling properties of these new gels in relation to molecular heterogeneity in acidic (pH 2) and basic (pH 10) solutions were performed. Water transport property of the gels was studied gravimetrically. In acidic solution, the diffusion process was non‐Fickian (anomalous) while in basic solution, the diffusion was quasi‐Fickian. The effect was more evident in solution of pH 2 than in pH 10. Various structural parameters of the gels such as number‐average molar mass between crosslink (Mc), the crosslink density (ρc), and the mesh size (ξ) were evaluated. The mesh sizes of the hydrogels were between 64 and 783 Å in the swollen state in acidic solution and 20 and 195 Å in the collapsed state in basic solution. The mesh size increased between three to four times during the pH‐dependent swelling process. The amount of unbound water (free water) and bound water of the gels was also evaluated using differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
(2‐Hydroxyethyl)trimethylammonium silicate, Si8O20[N(CH3)3(C2H4OH)]8·nH2O, was allowed to react with zirconium tetrakis(2,4‐pentanedionate) in methanol, resulting in gel formation. The gels were heat‐treated at 650–1000 °C in air. The product at 650 °C showed a specific surface area of 500 m2 g−1, and the average pore diameter was ca 4.3 nm, indicating the formation of a thermally stable mesoporous body. Gels with the same composition were also prepared by sol–gel processing using tetraethoxysilane as a silica source. The specific surface area of the product yielded by heating the gels at 650 °C was 425 m2 g−1 and the average pore diameter was ca 2.8 nm, which were lower than those of the product from the gels prepared with (2‐hydroxyethyl)trimethylammonium silicate. These differences have been attributed to the difference in nanostructure of the gels, caused by the structure of the silica sources and their polymerization behaviour. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Poly(N-isopropylacrylamide) (pNIPAAm) gels are stimulus-responsive hydrogels that exhibit large reversible changes in their volume and surface physicochemical properties near the lower critical solution temperature (LCST) in response to external stimuli, such as a change in temperature or solvent composition. Here we report how different phase states, induced isothermally by changes in the solvent composition, affect the tribological properties of pNIPAAm hydrogels. Our measurements indicate that gels in a collapsed conformation (above the LCST) exhibit significantly more friction than swollen gels (below the LCST) at low shear rates. These differences arise from changes in the surface roughness, adhesive interactions, and chain entanglements of the gel surfaces associated with the phase transition. Importantly, we show that the changes in friction, triggered by an external stimulus, are reversible. These reversible and possibly tunable changes in friction may have a significant impact on the design of coatings for biosensors and for actuation devices based on stimulus-responsive hydrogels.  相似文献   

16.
Surfactant‐grafted hydrogels with a fast response to temperature were prepared. In order to clarify the mechanism of rapid shrinking, the effects of the grafted surfactant and the homogeneity of the main chain were investigated. Poly(NIPAAm‐co‐S180A) gels prepared using a chemical cross‐linker (bis‐PNS gels) exhibited rapid shrinking, as did PNS gels prepared by γ‐ray irradiation (γ‐PNS gels). This suggested that the rapid shrinking of the PNS gel did not depend on the homogeneity of the main‐chain structure. The shrinking kinetics of the bis‐PNS gels depended on the amount of the introduced surfactant, which means that shrinking is enhanced by micelle formation as a dynamic driving force. From the analysis by dynamic light scattering (DLS) and scanning microscopic light scattering (SMILS), it was suggested that the micelle structure, which induced rapid shrinking, existed in the bis‐PNS gel.

  相似文献   


17.
Poly((N-(Hydroxymethyl)methacrylamide)–1-allyl-2-thiourea) hydrogels, Poly(NHMMA–ATU), were synthesized by gamma radiation using 60Co γ source at different irradiation doses and different ATU content in the irradiated monomer mixture. The swellability of the synthesized hydrogels was changed by irradiation doses and by the content of ATU in the irradiated mixture. These hydrogels were used for the specific gold recovery and pre-concentration from single gold ion solutions and from different natural samples. It has been observed that gold adsorption capacity onto the hydrogels was high at low pHs and reached maximum value at pH = 0.5. Adsorption capacity of the hydrogels for gold at pH = 0.5 was found to be about 698 mg g− 1 dry hydrogels. Adsorption equilibrium time of gold ions onto the hydrogels was found to be very short and also these hydrogels were showed extremely high selectivity to the gold ions in acidic media when the concentration of the other metal ions were extremely higher than gold. Because of the high specificity of these hydrogels to gold beside the other metal ions at low pHs, all matrix effects were easily eliminated adsorbing gold onto the hydrogels and desorbing into 3 M HCl solution containing 0.8 M thiourea. These hydrogels were found to be highly open pore size. This property of the hydrogels make them attractive due to high adsorption capacity of gold ions on/in the hydrogels penetrating inside and react to all functional groups in the interior surface of the hydrogels.  相似文献   

18.
Hydrogels were prepared by the cross-linking reactions of carboxymethyl cellulose with di- or polyfunctional glycidyl ether to investigate the effects of different cross-linker’s chain length and the number of epoxy groups on the properties of the gels. Fourier transform infrared spectra showed a new peak at ν = 1,740 cm−1 assigned to the absorption of carbonyl groups in the new ester structure formed by the cross-linking of –COONa with the epoxy compounds. The interior morphology data indicated microporous network structures which correlated with the swelling of hydrogels. The swelling data in water, urea, sucrose, urine and aspartame showed increases in swelling with an increase in chain length of the cross-linker but decreased with the number of epoxy groups on the cross-linker. Collectively, the gels were ionic strength sensitive. The rheology experiments showed that gel point (t gel) increased with the chain length of the cross-linker but reduced with increase in number of epoxy groups on the cross-linker. Dynamic oscillatory measurements indicated stronger material functions in gels prepared with polyfunctional epoxy cross-linkers. The hydrogels prepared with difunctional epoxy groups had higher loading capacity and faster release of bovine serum albumin compared with hydrogels based on polyfunctional epoxy group cross-linkers.  相似文献   

19.
Previous studies on hydrogels crosslinked by acrylated PEO99–PPO65–PEO99 triblock copolymer (F127DA) micelles demonstrate outstanding strength and toughness, which is attributed to the efficient energy dissipation through the hydrophobic association in the micelles. The current study further focuses on how the solvent property affects the structures and the mechanical properties of F127DA micelle crosslinked polyacrylamide gels. Binary solvents comprised of dimethyl sulfoxide (DMSO) and water are used to adjust the polymer/solvent interactions, which consequently tune the conformations of the polymer chains in the network. The presence of DMSO significantly decreases the strength but increased the stretchability of the gels, whereas the overall tensile toughness remained unchanged. In situ small‐angle X‐ray scattering measurements reveal the deformation of micelles along with the stretching direction. A structure evolution mechanism upon solvent change is proposed, according to the experimental observations, to explain influence of solvent quality on the mechanical properties of the micelle‐crosslinked gels. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 473–483  相似文献   

20.
Novel poly(methacrylamide‐co‐2‐acrylamido‐2‐methyl‐ 1‐propanesulfonic acid) (poly(MAAm‐co‐AMPS)) hydrogels were synthesized by free radical polymerization of methacrylamide (MAAm) and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) in deionized water at 60 °C by using ammonium peroxydisulfate (APS), N,N′‐methylenebisacrylamide (MBAAm) and N,N,N′,N′‐tetramethylethylenediamine (TEMED) as initiator, crosslinker, and activator, respectively. To investigate the effects of feed content on the pH‐ and temperature‐dependent swelling behavior of poly(MAAm‐co‐AMPS), molar ratio of MAAm to AMPS in feed was varied from 90/10 to 10/90. Structural characterization of gels was performed by Fourier transform infrared (FTIR) spectroscopy using attenuated total reflectance (ATR) technique. Thermal and morphological characterizations of gels were performed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Although an apparent pH‐sensitivity was not observed for the poly(MAAm‐co‐AMPS) gels during the swelling in different buffer solutions, their temperature‐sensitivity became more evident with the increase in AMPS content of copolymer. Thermal stability of poly(MAAm‐co‐AMPS) gels increased with MAAm content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号