首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesogen‐jacketed liquid crystalline polymers (MJLCPs) with both electron‐transport oxadiazole and hole‐transport thiophene in the side chain were reported for their promising electroluminescent property. Monomers of 2,5‐bis{5‐[(4‐alkoxyphenyl)‐1,3,4‐oxadiazole]thiophen‐2‐yl}styrene (M‐Cm, m is the number of the carbons in the alkoxy groups, m = 8,10) were synthesized and confirmed by 1H‐NMR, mass spectrometry, and elemental analysis. The corresponding polymers were successfully obtained and characterized by thermal analysis, optical spectroscopy, cyclic voltammetry, electroluminescent analysis, polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD). The polymers exhibited high decomposition temperatures reaching 382 °C and high Tg's reaching 184 °C. The absorption spectra indicated that both the monomers and polymers had little aggregation in film than that in solution, and the absorption spectra of the polymers showed an obvious blue‐shift compared with those of the monomers. Both the monomers and the polymers had blue‐green emission, and the photoluminescence spectra of the polymers in film suggested the formation of excimer or exciplex. The polymers showed lower HOMO energy levels and LUMO energy levels than those of the MJLCPs containing oxadiazole unit reported before. Electroluminescence study with the device configuration of ITO/PEDOT/PVK/polymer/TPBI/Ca/Ag showed maximum brightness and current efficiency of 541 cd/m2 and 0.10 cd/A, which proved that the introduction of directly connected electron‐ and hole‐transport units could greatly improve the EL property of side‐chain conjugated polymers. The phase structures of the polymers were confirmed to be smectic A phase through the results of PLM and WAXD. The annealed samples emitted polarized photoluminescence at room temperature, which indicated potential utility for practical applications in display. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1502–1515, 2010  相似文献   

2.
Here, a family of donor/acceptor (D/A) alternating copolymers and random two‐acceptor and three‐acceptor copolymers were synthesized via Suzuki polymerization based on heptadecan‐9‐yl substituted carbazole as a donor and 4,7‐Bis(5‐bromothiophene‐2‐yl)benzo[c][1,2,5]thiadiazole (DTBT), 2,5‐diethylhexyl‐3,6‐bis(5‐bromothiophene‐2‐yl)pyrrolo[3,4‐c]‐pyrrole‐1,4‐dione (DPP) and 2,8‐dibromo‐4,10‐bis(2‐ethylhexyl)thieno[2′,3′:5,6] pyrido[3,4‐g]thieno[3,2‐c]isoquinoline‐5,11(4H,10H)‐dione (TPTI) as acceptors. For the first time, a relatively new electron‐deficient TPTI unit was used as an acceptor in carbazole‐based conjugated polymers. Introduction of the electron‐deficient TPTI unit into the polymer backbone increased the open‐circuit voltage (Voc) of the resulting polymer solar cells up to 0.96 V. PCTPTI and PCDTBT‐TPTI exhibited external quantum efficiencies (EQE) up to 75%. All random two‐acceptor copolymers showed broadened absorption profiles compared to the D/A alternating analogues. In order to further improve the light absorption, a random three‐acceptor copolymer was synthesized for the first time, resulting in the broadest absorption in the range of 350–750 nm. Highest occupied molecular orbital (HOMO) energies and Voc values of the resulting polymers could be successfully tuned by introducing different monomer units into the polymer backbone in different ratios. These results indicate that TPTI is a promising acceptor unit for conjugated polymers and that the random copolymer approach is a successful tool for fine tuning of polymer properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2781–2786  相似文献   

3.
Redox‐active 6‐oxoverdazyl polymers were synthesized via ring‐opening metathesis polymerization (ROMP) and their solution, bulk, and thin‐film properties investigated. Detailed studies of the ROMP method employed confirmed that stable radical polymers with controlled molecular weights and narrow molecular weight distributions (Ð < 1.2) were produced. Thermal gravimetric analysis of a representative example of the title polymers demonstrated stability up to 190 °C, while differential scanning calorimetry studies revealed a glass transition temperature of 152 °C. Comparison of the spectra of 6‐oxoverdazyl monomer 12 and polymer 13 , including FT‐IR, UV‐vis absorption, and electron paramagnetic resonance spectroscopy, was used to confirm the tolerance of the ROMP mechanism for the 6‐oxoverdazyl radical both qualitatively and quantitatively. Cyclic voltammetry studies demonstrated the ambipolar redox properties of polymer 13 (E1/2,ox = 0.25 and E1/2,red = ?1.35 V relative to ferrocene/ferrocenium), which were consistent with those of monomer 12 . The charge transport properties of thin films of polymer 13 were studied before and after a potential of 5 V was applied, revealing a drastic drop in the resistivity from 106?1010 Ω m or more to 1.7 × 104 Ω m and suggesting the potential usefulness of polymer 13 in bistable electronics. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1803–1813  相似文献   

4.
Conjugated polymers with strong photophysical properties are used in many applications. A homopolymer ( P1 ) and five new low band gap copolymers based on 4,4′‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) and acceptors 3,6‐dithienyldiketopyrrolopyrrole ( P2 ), phthalimide ( P3 ), benzotriazole ( P4 ), 4,7‐dithienyl[1,2,3]triazolo[4,5g]quinoxaline ( P5 ), and 2,5‐dithienylthieno[3,4‐b]pyrazine ( P6 ) were prepared by means of Sonogashira polymerization. The characterization of polymers by using 1H NMR, absorption, and emission spectroscopy is discussed. All polymers with high molecular weights (Mn) of 16 000 to 89 000 g mol?1 showed absorption maxima in the deep‐red region (λ=630–760 nm) in solution and exhibited significant redshifts (up to 70 nm) in thin films. Polymers P2 , P5 , and P6 showed narrow optical band gaps of 1.38, 1.35, and 1.38 eV, respectively, which are significantly lower than that of P1 (1.63 eV). The HOMO and LUMO energy levels of the polymers were calculated by using cyclic voltammetry measurements. The LUMO energy levels of BODIPY‐based alternating copolymers were independent of the acceptors; this suggests that the major factor that tunes the LUMO energy levels of the polymers could be the BODIPY core. All polymers showed selective and reproducible detection of volatile organic solvents, such as toluene and benzene, which could be used for developing sensors.  相似文献   

5.
Four new D—A type copolymers with 2D‐conjugated side‐chain identified PfToBT, PbToBT, PfTDPP and PbTDPP, containing two acceptors 4,7‐dithien‐2‐yl‐benzo[c][1,2,5]thiadiazole (DTBT), and diketopyrrolopyrrole (DPP) linked by thiophene donors, are obtained using Pd‐catalyzed Stille‐coupling reaction. These polymers show a broad visible‐near‐infrared absorption band (Eg = 1.79–1.66 eV) and possess a relatively low‐lying HOMO level at ?5.34 to ?5.12 eV. All the polymer:PC70BM blend films showed edge‐on structure and have similar dπ‐spacing values. According to the structure of conjugated side‐chain, the vertical distributions of polymer chains and PC70BM within the BHJ (bulk heterojunction) were different. When DPP used as an acceptor, conjugated side chains of the polymer coexisted with PC70BM in same position. The BHJ film prepared from PfToBT, PbToBT had a discontinuous network between polymer and PC70BM, whereas films from PfTDPP and PbTDPP formed continuous and evenly distributed network between them. This optimized vertical morphology promotes hole transport along respective pathways of polymers and fullerenes in the vertical direction, leading to high JSC. PbTDPP shows PCE up to 2.9% (Jsc of 9.4 mA/cm2, Voc of 0.68 V, and FF of 0.44). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2746–2759  相似文献   

6.
The purpose of this work is to provide an in‐depth interpretation of the optical and electronic properties of a series of aromatic oligomers and polymers, including [N‐(4‐(5‐(3‐(1,3,4‐oxadiazol‐2,5‐ylene)phenyl)‐1,3,4‐oxadiazol‐2‐ylene)phenyl)‐N‐(1,4‐phenylene)amine]n (NPPP)n and [N‐(4‐(5‐(3‐(1,3,4‐oxadiazol‐2,5‐ylene)phenyl)‐1,3,4‐oxa‐diazol‐2‐ylene)phenyl)‐N‐(1,4‐phenylene)naphthalene‐1‐amine]n (NPPN)n (n=1–4). These polymers and oligomers show great potential for application to organic light‐emitting diodes (OLEDs) as efficient blue emitters due to the tuning of the optical and electronic properties. The geometric and electronic structures of the oligomers in the ground state were investigated using density functional theory (DFT) and the ab initio HF, whereas the lowest singlet excited state of NPPP1 was optimized with ab initio configuration interaction singles (CIS). To assign the absorption and emission peaks observed in the experiment, the absorption and emission spectra of the ground and lowest singlet excited states were calculated with time‐dependent DFT (TD‐DFT) and Zerner's independent neglect of differential overlap (ZINDO). All DFT calculations were performed using the B3LYP functional and the 6‐31G basis set. The results show that the HOMO, LUMO, energy gaps, ionization potentials, and electron affinities for these polymers are affected by increasing the conjugated chain, which favors the hole and electron injection into OLED. The trend of the variation of ΔH‐L and the lowest excitation energies with 1/n, and the electronic structure and optical properties of these polymers were extrapolated and analyzed. The absorption spectra exhibit red shifts to some extent [the absorption spectra: 359.47 (NPPP1)<370.84 (NPPP2)<373.84 (NPPP3)<375.33 nm (NPPP4); 361.14 (NPPN1)<370.34 (NPPN2)<373.39 (NPPN3)<374.62 nm (NPPN4)]. Our calculated spectra agree well with the experimental findings where available, showing small but systematic deviations.  相似文献   

7.
A series of new polythiophene derivatives containing a thiazole ring as an electron deficient unit were successfully synthesized via Stille coupling reactions. Synthesized polymers were classified into two types (H‐shape packing and A‐shape packing) based on their interdigitated packing structure induced by different side chain configurations. The thiophene derivatives that contained a thiazole unit ( PT50Tz50 , PTz100 , and PTTz ) exhibited much better thermal stability than did the full thiophene polymers ( PT100 and PTT ). The polymers containing the thiazole unit ( PTz100 and PTTz ) showed a red‐shifted absorption spectrum with clear vibronic structure. In addition, the XRD and AFM results showed that the polymers containing the thiazole unit and interdigitated H‐shape exhibited much better ordered and connected intermolecular structures than did other polymers. The improved intermolecular ordering and surface morphologies directly facilitated charge carrier transport in thin film transistor (TFT) devices, without introducing charge traps, and yielded higher solar cell performance. Among these polymers, the PTTz copolymer exhibited the best TFT performance (μ = 0.050 cm2 V?1 s?1, on/off ratio = 106, and Vth = ?2 V) and solar cell performance (PCE = 1.39%, Jsc = 6.58 mA cm?2, and Voc = 0.58 V). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Poly((2‐Alkylbenzo[1,2,3]triazole‐4,7‐diyl)vinylene)s (pBTzVs) synthesized by Stille coupling show different absorption spectra, solid‐state morphology, and photovoltaic performance, depending on straight‐chain versus branched‐chain (pBTzV12 and pBTzV20) pendant substitution. Periodic boundary condition density functional computations show limited alkyl pendant effects on isolated chain electronic properties; however, pendants could influence polymer backbone conjugative planarity and polymer solid film packing. The polymers are electronically ambipolar, with best performance by pBTzV12 with hole and electron transport mobilities of 4.86 × 10?6 and 1.96 × 10?6 cm2 V?1 s?1, respectively. pBTzV12 gives a smooth film morphology, whereas pBTzV20 gives a very different fibrillar morphology. For ITO/PEDOT:PSS/(1:1 w/w polymer:PC71BM)/LiF/Al devices, pBTzV12 gives power conversion efficiency (PCE) up to 2.87%, and pBTzV20 gives up to PCE = 1.40%; both have open‐circuit voltages of VOC = 0.6–0.7 V. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1539–1545  相似文献   

9.
A series of 1‐chloro‐2‐arylacetylenes [Cl‐C?C‐Ar, Ar = C6H5 ( 1 ), C6H4pi Pr ( 2 ), C6H4p‐Oi Pr ( 3 ), C6H4p‐NHC(O)Ot Bu ( 4 ), and C6H4oi Pr ( 5 )] were polymerized using (tBu3P)PdMeCl/silver trifluoromethanesulfonate (AgOTf) and MoCl5/SnBu4 catalysts. The corresponding polymers [poly( 1 )–poly( 5 )] with weight‐average molecular weights of 6,500–690,000 were obtained in 10–91% yields. THF‐insoluble parts, presumably high‐molecular weight polymers, were formed together with THF‐soluble polymers by the Pd‐catalyzed polymerization. The Pd catalyst polymerized nonpolar monomers 1 and 2 to give the polymers in yields lower than the Mo catalyst, while the Pd catalyst polymerized polar monomers 3 and 4 to give the corresponding polymers in higher yields. The 1H NMR and UV–vis absorption spectra of the polymers indicated that the cis‐contents of the Pd‐based polymers were higher than those of the Mo‐based polymers, and the conjugation length of the Pd‐based polymers was shorter than that of the Mo‐based polymers. Pd‐based poly( 5 ) emitted fluorescence most strongly among poly( 1 )–poly( 5 ). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 382–388  相似文献   

10.
Near‐infrared (NIR) emissive conjugated polymers were prepared by palladium‐catalyzed Sonogashira polymerization of diiodobenzene‐functionalized aza‐borondipyrromethene (Aza‐BODIPY) monomers, which were substituted at 3 and 5 or 1 and 7 positions on the Aza‐BODIPY core, with 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene or 3,3′‐didodecyl‐2,2′‐diethynyl‐5,5′‐bithiophene. The structures of the polymers were confirmed by 1H NMR, 13C NMR, 11B NMR, Fourier transform infrared (FT‐IR) spectroscopies, and size exclusion chromatography (SEC). The optical properties were then characterized by UV–vis absorption and photoluminescence (PL) spectroscopies, and theoretical calculation using density‐functional theory (DFT) method. The polymers were fusible and soluble in common organic solvents including tetrahydrofuran (THF), o‐xylene, toluene, CHCl3, and CH2Cl2, etc. The UV–vis absorption and PL spectra of the polymers shifted to long wavelength region in comparison with simple Aza‐BODIPY as the counterpart because of extended π‐conjugation of the polymers. The polymers efficiently emitted NIR light with narrow emission bands at 713~777 nm on excitation at each absorption maximum. Especially, the polymer attached 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene to 3,5‐position on the core revealed intense quantum yields (?F = 24%) in this NIR region (753 nm). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
A series of poly(N‐(ω′‐alkylcarbazoly) methacrylates) tris(bipyridine) Ru‐centered bifunctional polymers with good filming, thermal, and solubility properties were synthesized and characterized. Atom transfer radical polymerization (ATRP) of N‐(ω′‐alkylcarbazoly) methacrylates in solution was used, where Ru complexes with one and three initiating sites acted as metalloinitiators with NiBr2(PPh3)2 as a catalyst. ATRP reaction conditions with respect to polymer molecular weights and polydispersity indices (PDI) of the target bifunctional polymers were examined. Electronic absorption and emission spectra of the resultant functional polymers provided evidence of chromophore presence within a single polymeric chain. The thermal properties of all polymers were also investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and these analyses have indicated that these polymers possess higher thermal stabilities than poly(methyl methacrylate) (PMMA) obtained via free radical polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6057–6072, 2005  相似文献   

13.
Hydrosilylation polymerizations of 1,1‐dimethyl‐2,5‐bis(4‐ethynylphenyl)‐3,4‐diphenylsilole with aromatic silylhydrides including 1,4‐bis(dimethylsilyl)benzene, 4,4′‐bis(dimethylsilyl)biphenyl, 2,5‐bis(dimethylsilyl)thiophene, and 2,7‐bis(dimethylsilyl)‐9,9‐dihexylfluorene in the presence of Rh(PPh3)3Cl catalyst in refluxed tetrahydrofuran afford a series of silole‐containing poly(silylenevinylene)s. Under optimum condition, the alkyne polyhydrosilylation reactions progress efficiently and regioselectively, yielding polymers with high molecular weights (Mw up to 95,300) and good stereoregularity (E content close to 99%) in high yields (up to 92%). The polymers are processable and thermally stable, with high decomposition temperatures in the range of 420?449 °C corresponding to 5% weight loss. They are weakly fluorescent in the solution state but become emissive in the aggregate and film states, demonstrating their aggregation‐enhanced emission characteristics. The explosive sensing capabilities of the polymers are examined in both solution and aggregate states. The emissions of the polymers aggregates in aqueous mixture are quenched more efficiently by picric acid in an exponential pattern with high quenching constants (up to 27,949 L mol?1), suggesting that the polymers aggregates are sensitive chemosensors for explosive detection. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A series of new semiconducting polymers based on 4,4‐dihexyl‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene, 2,2‐dihexyl‐2H‐benzimidazole, and thiophene units was synthesized. The polymers show good solubility at room temperature in organic solvents owing to long alkyl chain in new acceptor, 2,2‐dihexyl‐2H‐benzimidazole. The advantage of dihexyl‐2H‐benzimidazole compared to the benzothiadiazole is to improve the solubility of the polymer. It was found that these polymers can finely be tuned for photovoltaic application by adjusting the contents ratio of the dihexyl‐2H‐benzimidazole unit. The spectra of the solid films show absorption bands with maximum peaks in the range of 421–577 nm and the absorption onsets at 588–683 nm, corresponding to band gaps of 2.11–1.82 eV. The devices with PCPDTDTHBI‐1 :PC71BM showed an open‐circuit voltage (VOC) of 0.46 V, a short‐circuit current density (JSC) of 3.83 mA/cm2, and a fill factor of 0.36, giving a power conversion efficiency of 0.64%. Decrease of the dihexyl‐2H‐benzimidazole contents in the polymers induced red‐shift of the UV absorptions, and increased VOC and JSC values, to improve the efficiency of organic photovoltaics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
New aromatic diyne monomers of 1,4‐diethynyl‐2,5‐(dihexyloxy)benzene ( 1 ), 1,6‐diethynyl‐2‐(hexyloxy)naphthalene ( 2 ), and 9,9‐bis(4‐ethynylphenyl)fluorene ( 3 ) are synthesized. Their homopolymerizations and copolymerizations with 1‐octyne ( 4 ) or phenylacetylene ( 5 ) are effected by TaBr5–Ph4Sn and CpCo(CO)2, giving soluble hyperbranched polyarylenes with high molecular weights (Mw up to ~ 2.9 × 105) in high yields (up to 99%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, UV, PL, and TGA analysis. The polymers show excellent thermal stability (Td > 400 °C) and carbonize when pyrolyzed at 900 °C. Upon photoexcitation, the polymers emit deep blue light in the vicinity of ~400 nm with fluorescence quantum yields up to 92%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4249–4263, 2007  相似文献   

16.
Acetylenes containing salicylideneaniline groups—N‐salicylidene‐3‐ethynylaniline ( 1 ), N‐(3‐t‐butylsalicylidene)‐3‐ethynylaniline ( 2 ), and N‐(3‐t‐butylsalicylidene)‐4‐ethynylaniline ( 3 )—polymerized smoothly and gave yellow to red polymers in excellent yields when a rhodium catalyst was employed. Polymers with alkyl substituents on the aromatic rings [poly( 2 ) and poly( 3 )] were soluble in CHCl3, tetrahydrofuran, and so forth, whereas the polymer without alkyl substituents [poly( 1 )] was insoluble in any solvent. N‐(3‐t‐Butylsalicylidene)propargylamine did not provide any polymer. Thermogravimetric analyses of the resultant polymers exhibited good thermal stability (To, onset temperature of weight loss > 300 °C). The ultraviolet–visible spectra of the polymers showed absorption maxima and cutoff wavelengths around 360 and 520 nm, respectively. The polymers exhibited largely Stokes‐shifted fluorescence (emission wavelength ? 550 nm) upon photoexcitation at 350 nm, which resulted from the photoinduced intramolecular proton transfer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2458–2463, 2002  相似文献   

17.
To obtain novel low‐bandgap materials with tailored hole‐transport properties and extended absorption, electron rich 3,4‐ethylenedioxythiophene is introduced as a comonomer in diketopyrrolo[3,4‐c]pyrrole copolymers with different aryl flanking units. The polymers are characterized by absorption and photoluminescence spectroscopy, dynamic scanning calorimetry, cyclic voltammetry, and X‐ray diffraction. The charge transport properties of these new materials are studied carefully using an organic field effect transistor geometry where the charge carriers are transported over a narrow channel at the semiconductor/dielectric interface. These results are compared to bulk charge carrier mobilities using space‐charge limited current (SCLC) measurements, in which the charge carrier is transported through the complete film thickness of several hundred nanometers. Finally, charge carrier mobilities are correlated with the electronic structure of the compounds. We find that in particular the thiophene‐flanked copolymer PDPP[T]2‐EDOT is a very promising candidate for organic photovoltaics, showing an absorption response in the near infrared region with an optical bandgap of 1.15 eV and a very high bulk hole mobility of 2.9 × 10?4 cm2 V?1 s?1 as measured by SCLC. This value is two orders of magnitudes higher than SCLC mobilities reported for other polydiketopyrrolopyrroles and is in the range of the well‐known hole transporting polymer poly(3‐hexylthiophene). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 639–648  相似文献   

18.
Two novel series of soluble alternating conjugated copolymers comprising 10‐alkylphenothiazine and bithiophene or 3‐pentylthieno[3,2‐b]thiophene moieties were synthesized using palladium‐catalyzed Suzuki coupling reaction. The structures of the polymers and their thermal, photophysical, electrochemical, and photovoltaic properties were characterized and investigated. The polymers exhibited good thermal stability with decomposition temperature in the region of 342–390 °C and their glass transition temperatures (Tg) ranging from 126 to 150 °C. All polymers demonstrate broad optical absorption in the region of 300–500 nm with efficient blue‐green light emission. They showed ambipolar redox properties with low HOMO levels around ?5.13 eV. Polymer solar cells were fabricated using blends of the copolymers and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) in a 1:1 weight ratio. The maximum power conversion efficiency (η = 0.24%) was measured for the poly[3,7‐ (10‐hexylphenothiazine)‐alt‐bithiophene] as donor under simulated sun light (1000 W/m2). Open circuit voltages of up to 0.8 V have been obtained. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5266–5276, 2007  相似文献   

19.
A series of novel soluble polythiophene derivatives containing triphenylamine moiety were synthesized by Grignard metathesis (GRIM) method. The structures of the polymers were characterized and their physical properties were investigated. High molecular weight (Mn up to 25,800 g/mol) and thermostable polymers were obtained. The absorption spectra demonstrated that the absorption wavelength of the polymers could be tuned dramatically by introducing thiophene units in the main chain of the polymers. Photoluminescence spectra indicated that there was intramolecular energy transfer from the side chain to the main chain, and the maximum emission was red‐shifted gradually with the increase of thiophene units in the main chain. Cyclic voltammetry displayed that the polymers possessed relatively high oxidation potential, which promised good air stability and high open circuit voltage for photovoltaic cells application. Finally, bulk heterojunction photovoltaic devices were fabricated by using the polymers as donors and (6,6)‐phenyl C61‐butyric acid methyl ester (PCBM) as acceptor. The maximal open circuit voltage of the photovoltaic cells reached 0.71–0.87 V and the power conversion efficiencies of the devices were measured between 0.014% and 0.45% under white light at 100 mW/cm2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3970–3984, 2008  相似文献   

20.
A series of light‐emitting hyperbranched poly(arylene ethynylene)s (HB‐PAEs) were prepared by the Sonogashira coupling from bisethynyl of carbazole, fluorene, or dialkoxybenzenes (A2 type) and tris(4‐iodophenyl)amine (B3 type). For comparison, two linear polymers (L‐PAEs) of the HB analogs were also synthesized. The polymers were characterized by Fourier transform infrared, NMR, and GPC. The HB polymers showed excellent solubility in chloroform, THF, and chlorobenzene when compared with their linear analogs. The number‐average molecular weight (Mn) of the polymers determined from GPC was found to be in the range of 18,600–34,200. The polymers were thermally stable up to 298–330 °C with only 5% weight loss. The absorption maxima of the polymers were between 354 and 411 nm with optical band gap in the range of 2.5–2.9 eV. The HB polymers were found to be highly fluorescent with photoluminescence quantum yields around 33–42%. The highest occupied molecular orbital energy levels of the polymers calculated from onset oxidation potentials were found to be in the range from ?5.83 to ?6.20 eV. Electroluminescence (EL) properties of three HB‐PAEs and one L‐PAE were investigated with device configuration ITO/PEDOT:PSS/Polymer/LiF/Al. The EL maxima of HB‐PAEs were found to be in the range of 507–558 nm with turn‐on voltages around 7.5–10 V and maximum brightness values of 316–490 cd/m2. At the same time, linear analog of one HB‐PAE was found to show a maximum brightness of 300 cd/m2 at a turn‐on voltage of 8.2 V. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号