首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of functional groups bearing silica/poly(styrene‐co‐4‐vinylpyridine) core–shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X‐ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core–shell‐particle‐supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer‐supported Cp2ZrCl2/methylaluminoxane catalyst systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2085–2092, 2001  相似文献   

2.
The use of crosslinked poly(styrene‐co‐4‐vinylpyridine) having functional groups as the support for zirconocene catalysts in ethylene polymerization was studied. Several factors affecting the activity of the catalysts were examined. Conditions like time, temperature, Al/N (molar ratio), Al/Zr (molar ratio), and the mode of feeding were found having no significant influence on the activity of the catalysts, while the state of the supports had a great effect on the catalytic behavior. The activity of the catalysts sharply increased with either the degree of crosslinking or the content of 4‐vinylpyridine in the support. Via aluminum compounds, AlR3 or methylaluminoxane (MAO), zirconocene was attached on the surface of the support. IR spectra showed an intensified and shifted absorption bands of C N in the pyridine ring, and a new absorption band appeared at about 730 cm−1 indicating a stable bond Al N formed in the polymer‐supported catalysts. The formation of cationic active centers was hypothesized and the performance of the polymer‐supported zirconocene was discussed as well. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 37–46, 1999  相似文献   

3.
Through the Diels–Alder reaction between cyclopentadiene groups attached to polystyrene in the presence of zirconocene, novel polystyrene‐supported metallocene catalysts were prepared. A novel method for immobilizing metallocene catalysts was investigated, and the resultant polystyrene‐supported metallocene for olefin polymerization was studied. The results of olefin polymerization showed that different crosslinking degrees of support in the catalyst system had significant effects on the catalytic behavior. The influence of the [Al]/[Zr] molar ratio and the temperature on the (co)polymerization activity was studied. When 1‐hexene and 1‐dodecene were used for copolymerization with ethylene, an obvious positive comonomer effect was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2650–2656, 2005  相似文献   

4.
The use of ultraviolet/visible spectroscopy (UV-Vis) for the prediction of metallocene catalyst potential for the polymerisation of olefins is described. Upon addition of methylaluminoxane (MAO) to rac-[C2H4(1-indenyl)2ZrCl2] ([Al]/[Zr] = 200) the ligand-to-metal charge transfer band shows a hypsochromic shift while a bathochromic shift is observed when more MAO is added ([Al]/[Zr] = 2000). These shifts can be explained by assuming that methylation of the zirconocene by MAO occurs in the case of [Al]/[Zr] = 200 while a cationic complex, the active catalytic system, is formed upon addition of more MAO, e.g., [Al]/[Zr] = 2000.  相似文献   

5.
Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3]+ (MeGlyH+) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonites [high‐purity montmorillonite (MMT)‐MeGlyH+] had larger interlayer spacing (12.69 Å) than montmorillonites without treatment (9.65 Å). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT‐MeGlyH+] had much higher Zr loading and higher activities than those of other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT‐MeGlyH+, Cp2ZrCl2/MAO/MMT, [Cp2ZrCl]+[BF4]/MMT, [Cp2ZrCl]+[BF4]?/MMT‐MeGlyH+, [Cp2ZrCl]+[BF4]?/MAO/MMT‐MeGlyH+, and [Cp2ZrCl]+[BF4]?/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (Cp2ZrCl2/MAO/MMT‐MeGlyH+). MeGlyH+ and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1892–1898, 2002  相似文献   

6.
Ansa‐zirconocene diamide complex rac‐(EBI)Zr(NMe2)2 [rac‐1, EBI = ethylene‐1,2‐bis(1‐indenyl)] reacted with AlR3 (R = Me, Et, iBu) or Al(iBu2)H and then with [CPh3][B(C6F5)4] (2) in toluene in order to perform propylene polymerization by cationic alkylzirconium species, which are in situ generated during polymerization. Through the sequential NMR‐scale reactions of rac‐1 with AlR3 or Al(iBu2)H and then with 2, rac‐1 was demonstrated to be transformed to the active alkyzirconium cations via alkylated intermediates of rac‐1. The cationic species generated by using AlMe3, AlEt3, and Al(iBu2)H as alkylating reagents tend to become heterodinuclear complex; however, those by using bulky Al(iBu)3 become base‐free [rac‐(EBI)Zr(iBu)]+ cations. The activity of propylene polymerization by rac‐1/AlR3/2 catalyst was deeply influenced by various parameters such as the amount and the type of AlR3, metallocene concentration, [Al]/[2] ratio, and polymerization temperature. Generally the catalytic systems using bulky alkylaluminum like Al(iBu)3 and Al(iBu)2H show higher activity but lower stereoregularity than those using less bulky AlMe3 and AlEt3. The alkylating reagent Al(iBu)3 is not a transfer agent as good as AlMe3 or AlEt3. The polymerization activities show maximum around [Al]/[2] ratio of 1.0 and increase monotonously with polymerization temperature. The overall activation energy of both rac‐1/Al(iBu)3/2 and rac‐1/Al(iBu)2H catalysts is 6.0 kcal/mol. As the polymerization temperature increases, the stereoregularity of the resulting polymer decreases markedly, which is demonstrated by the decrease of [mmmm] pentad value and by the increase of the amount of polymer soluble in low boiling solvent. The physical properties of polymers produced in this study were investigated by using 13C‐NMR, differential scanning calorimetry (DSC), viscometry, and gel permeation chromatography (GPC). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1523–1539, 1999  相似文献   

7.
The kinetics of propylene polymerization initiated by ansa‐metallocene diamide compound rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu)/methylaluminoxane (MAO) catalyst were investigated. The formation of cationic active species has been studied by the sequential NMR‐scale reactions of rac‐1 with MAO. The rac‐1 is first transformed to rac‐Me2Si(CMB)2ZrMe2 (rac‐2) through the alkylation mainly by free AlMe3 contained in MAO. The methylzirconium cations are then formed by the reaction of rac‐2 and MAO. Small amount of MAO ([Al]/[Zr] = 40) is enough to completely activate rac‐1 to afford methylzirconium cations that can polymerize propylene. In the lab‐scale polymerizations carried out at 30°C in toluene, the rate of polymerization (Rp) shows maximum at [Al]/[Zr] = 6,250. The Rp increases as the polymerization temperature (Tp) increases in the range of Tp between 10 and 70°C and as the catalyst concentration increases in the range between 21.9 and 109.6 μM. The activation energies evaluated by simple kinetic scheme are 4.7 kcal/mol during the acceleration period of polymerization and 12.2 kcal/mol for an overall reaction. The introduction of additional free AlMe3 before activating rac‐1 with MAO during polymerization deeply influences the polymerization behavior. The iPPs obtained at various conditions are characterized by high melting point (approximately 155°C), high stereoregularity (almost 100% [mmmm] pentad), low molecular weight (MW), and narrow molecular weight distribution (below 2.0). The fractionation results by various solvents show that iPPs produced at Tp below 30°C are compositionally homogeneous, but those obtained at Tp above 40°C are separated into many fractions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 737–750, 1999  相似文献   

8.
Living ring-opening polymerization of the cyclic carbonate 1,3-dioxepan-2-one was achieved by using the cationic zirconocene complex [Cp2ZrMe]+[B(C6F5)4] as catalyst at room temperature. A linear relation between conversion and molecular weight of the obtained polymer was observed. Furthermore, block copolymerization of the cyclic carbonate and ε-caprolactone was successfully performed.  相似文献   

9.
The cationic alkyl zirconocene complex Cp2Zr+Me[CH3B(C6F5)3] is found to initiate the ringopening polymerization of 1,5,7,11-tetraoxaspiro[5,5]undecane under mild condition to give poly(oxypropylenepropylenecarbonate) with low polydispersity. The rate of the polymerization is first-order with respect to monomer and catalyst concentration. At high monomer concentration, the initial rate of polymerization becomes zero-order with respect to monomer concentration.  相似文献   

10.
The ring‐opening polymerization of ε‐caprolactone (ε‐CL) and δ‐valerolactone (δ‐VL) using nine catalytic systems consisting of a combination of three C2v zirconocene complexes and three borate cocatalysts is discussed. The polymerizations proceed in a well‐controlled manner, producing polymers with relatively high molecular weights and narrow molecular weight distributions. Kinetic experiments of the polymerization of ε‐CL with the catalytic system Cp2ZrMe2/B(C6F5)3 (1) showed a linear dependence between polymerization yield and molecular weight with time, as well as between the molecular weight with the molar ratio of the monomer over the catalyst [ε‐CL]/[Zr], indicating sufficient control of the polymerization reaction. The catalytic system (1) was utilized for the synthesis of well‐defined block copolymers of MMA with ε‐CL and δ‐VL. All samples were characterized by size exclusion chromatography, nuclear magnetic resonance, and differential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3524–3537, 2007  相似文献   

11.
The cationic bridged zirconocene complex [iPr(Cp)(Ind)Zr(Me)(THF)][BPh4] ( 1 ‐BPh4) was synthesized. Polymerization of methyl methacrylate with 1 ‐BPh4 in CH2Cl2 at temperatures between –20 and 20°C led to the formation of isotactic poly(methyl methacrylate). The low polydispersity index of the polymer obtained and a successful two step polymerization of methyl methacrylate with 1 ‐BPh4 are hints towards a living polymerization mechanism. 1H and 13C NMR analysis revealed an enantiomorphic site‐controlled mechanism for the formation of isotactic poly(methyl methacrylate).  相似文献   

12.
13.
In a search for the hitherto elusive catalyst resting state(s) of zirconocene‐based olefin polymerization catalysts, a combination of UV/Vis and NMR spectrometric methods reveals that polymer‐carrying cationic Zr allyl complexes make up about 90 % of the total catalyst concentration. Other catalyst species that take part in the polymerization process have to be generated from this allyl pool into which they appear to relapse rather frequently.  相似文献   

14.
Heterogenization of tris(pentafluorophenyl)borane [B(C6F5)3] on a silica support stabilized with chlorotriphenylmethane (CICPh3) and N,N‐dimethylaniline (HNMe2Ph) creates the following supported borane cocatalysts: [HNMe2Ph]+[B(C6F5)3‐SiO2]? and [CPh3]+[B(C6F5)3‐SiO2]?. These supported catalysts were reacted with Cp2ZrCl2 TIBA in situ to generate active metallocene species in the reactor. Triisobutylaluminum (TIBA) was a good coactivator for dichloro‐zirconocene, acting as the prealkylating agent to generate cationic zirconocene (Cp2ZrC4H9+). The catalytic performances were determined from the kinetics of ethylene‐consumption profiles that were independent of the time dedicated to the activation of the catalysts. The scanning electron microscopy‐energy dispersive X‐ray measurements showed that B(C6F5)3 dispersed uniformly on the silica support. Under our reaction conditions, the [CPh3]+[B(C6F5)3‐SiO2]? system had higher productivity and weight‐average molecular weight than the [HNMe2Ph]+[B(C6F5)3‐SiO2]? system. For the [CPh3]+[B(C6F5)3‐SiO2]? system, the productivity increased with the amount catalyst; however, the polydispersity index of polyethylene synthesized did not change. The final shape of polymer particles was a larger‐diameter version of the original support particle. The polymer particles synthesized with supported [CPh3]+[B(C6F5)3‐SiO2]? catalysts had larger diameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3240–3248, 2002  相似文献   

15.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   

16.
Abstract

The kinetics of propylene polymerization initiated by racemic ethylene-1,2-bis(1-indenyl) zirconium bis(dimethylamide) [rac-(EBI) Zr(NMe2)2(rac-1)] cocatalyzed by methylaluminoxane (MAO) were studied. The polymerization behaviors of rac-1/MAO catalyst investigated by changing various experimental parameters are quite different from those of rac-(EBI) ZrCl2 (rac-2)/MAO catalyst, due to the differences in the generation procedure of cationic actives species of each metallocene by the reaction with MAO. The activity of rac-1/MAO catalyst showed maximum when [Al]/[Zr] is around 2000, when [Zr] is 137.1 μM, and when polymerization temperature is 30°C. The negligible activity of rac-1/MAO catalyst at a very low MAO concentration seems to be caused by the instability of the cationic active species. The meso pentad values of polymers produced by rac-1/MAO catalyst at 30°C are in the range of 82.8% to 89.7%. The rac-1/MAO catalyst lost stereorigid character at the polymerization temperature above 60°C. The molecular weight of polymer decreased as [Al]/[Zr] ratio, polymerization temperature, and [Zr] increased. The molecular weight distributions of all polymers are in the range of 1.8–2.3, demonstrating uniform active species present in the polymerization system.  相似文献   

17.
3‐Ethyl‐3‐methacryloyloxymethyloxetane (EMO) was easily polymerized by dimethyl 2,2′‐azobisisobutyrate (MAIB) as the radical initiator through the opening of the vinyl group. The initial polymerization rate (Rp) at 50 °C in benzene was given by Rp = k[MAIB]0.55 [EMO]1.2. The overall activation energy of the polymerization was estimated to be 87 kJ/mol. The number‐average molecular weight (M?n) of the resulting poly(EMO)s was in the range of 1–3.3 × 105. The polymerization system was found to involve electron spin resonance (ESR) observable propagating poly(EMO) radicals under practical polymerization conditions. ESR‐determined rate constants of propagation (kp) and termination (kt) at 60 °C are 120 and 2.41 × 105 L/mol s, respectively—much lower than those of the usual methacrylate esters such as methyl methacrylate and glycidyl methacrylate. The radical copolymerization of EMO (M1) with styrene (M2) at 60 °C gave the following copolymerization parameters: r1 = 0.53, r2 = 0.43, Q1 = 0.87, and e1 = +0.42. EMO was also observed to be polymerized by BF3OEt2 as the cationic initiator through the opening of the oxetane ring. The M?n of the resulting polymer was in the range of 650–3100. The cationic polymerization of radically formed poly(EMO) provided a crosslinked polymer showing distinguishably different thermal behaviors from those of the radical and cationic poly(EMO)s. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1269–1279, 2001  相似文献   

18.
Monocyclopendienyltitanium trichloride (CpTiCl3) was supported on polymer carriers with different hydroxyl contents, and the supported catalysts were used for styrene polymerization. The supported catalysts exhibited high activity even at low Al/Ti ratios and increased the molecular weight of the products, indicating that polymer carriers could stabilize the active sites. The polymers prepared with unsupported and supported catalysts were extracted with boiling n‐butanone and characterized by carbon nuclear magnetic resonance (13C NMR) and differential scanning calorimetry. The polymers obtained by supported catalysts had a high fraction of boiling n‐butanone‐insoluble part and high melting temperatures, but 13C NMR results showed that syndiotacticity decreased compared with that of polymers prepared with an unsupported catalyst. ESR study on the supported catalysts confirmed that the active sites supported on the carrier dropped into the solution and formed active sites the same as those in the unsupported system when they reacted with methylaluminoxane. 13C NMR analysis showed that the polymerization mechanism of the supported active sites was an active‐site controlled mechanism instead of a chain‐end controlled mechanism of the unsupported active sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 127–135, 2000  相似文献   

19.
A novel catalyst composed of neodymium (III) isopropoxide [Nd(OiPr)3] and methylaluminoxane (MAO) was examined in isoprene polymerization. The Nd(OiPr)3‐MAO catalyst proved to be highly effective in heptane even at low [Al]/[Nd] ratios (ca. 30) to give polyisoprene that possessed high cis‐1,4 stereoregularity (> ca. 90%), a high number‐average molecular weight (Mn ~105), and relatively narrow molecular weight distributions (Mw/Mn = 1.9–2.8). The catalyst activity increased with an increasing [Al]/[Nd] ratio from 10 to 80 as well as temperature of aging and polymerization from 0 to 60 °C. The polymerization proceeded in the first order with respect to the monomer concentration. Aliphatic solvents (heptane and cyclohexane) achieved a higher yield and Mn of polymer than toluene as a solvent. The Mw/Mn ratio remained around 2.0, and the gel permeation chromatographic curve was always unimodal, indicating that this system is homogeneous and involves a single active site. The microstructure of polyisoprene was determined by IR, 1H NMR, and 13C NMR. The cis‐1,4 contents of the final polymers stayed in the range of 90–92%, regardless of reaction conditions, indicating the high stability of stereospecificity of the catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1838–1844, 2002  相似文献   

20.
Ansa‐zirconocene diamide complex rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu) reacts with AlR3 (R = Me, Et, i‐Bu) and then with [CPh3]+[B(C6F5)4] (2) in toluene in order to in situ generate cationic alkylzirconium species. In the sequential NMR‐scale reactions of rac‐1 with various amount of AlMe3 and 2, rac‐1 transforms first to rac‐Me2Si(CMB)2Zr(Me)(NMe2) (rac‐3) and rac‐Me2Si(CMB)2ZrMe2 (rac‐4) by the reaction with AlMe3, and then to [rac‐Me2Si(CMB)2ZrMe]+ (5+) cation by the reaction of the resulting mixtures with 2. The activities of propylene polymerizations by rac‐1/Al(i‐Bu)3/2 system are dependent on the type and concentration of AlR3, resulting in the order of activity: rac‐1/Al(i‐Bu)3/2 > rac‐1/AlEt3/2 > rac‐1/MAO ≫ rac‐1/AlMe3/2 system. The bulkier isobutyl substituents make inactive catalytic species sterically unfavorable and give rise to more separated ion pairs so that the monomers can easily access to the active sites. The dependence of the maximum rate (Rp, max) on polymerization temperature (Tp) obtained by rac‐1/Al(i‐Bu)3/2 system follows Arrhenius relation, and the overall activation energy corresponds to 0.34 kcal/mol. The molecular weight (MW) of the resulting isotactic polypropylene (iPP) is not sensitive to Al(i‐Bu)3 concentration. The analysis of regiochemical errors of iPP shows that the chain transfer to Al(i‐Bu)3 is a minor chain termination. The 1,3‐addition of propylene monomer is the main source of regiochemical sequence and the [mr] sequence is negligible, as a result the meso pentad ([mmmm]) values of iPPs are very high ([mmmm] > 94%). These results can explain the fact that rac‐1/Al(i‐Bu)3/2 system keeps high activity over a wide range of [Al(i‐Bu)3]/[Zr] ratio between 32 and 3,260. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1071–1082, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号